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PREFACE

Reports in this volume are numbered consecutively beginning with number 1. Each report is
paginated with the report number followed by consecutive page numbers, e.g., 1-1, 1-2, 1-3; 2-1, 2-2, 2-3.

This document is one of a set of 15 volumes describing the 1998 AFOSR Summer Research
Program. The following volumes comprise the set:
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1. INTRODUCTION

The Summer Research Program (SRP), sponsored by the Air Force Office of Scientific Research
(AFOSR), offers paid opportunities for university faculty, graduate students, and high school
students to conduct research in U.S. Air Force research laboratories nationwide during the summer.

Introduced by AFOSR in 1978, this innovative program is based on the concept of teaming
academic researchers with Air Force scientists in the same disciplines using laboratory facilities and
equipment not often available at associates' institutions.

The Summer Faculty Research Program (SFRP) is open annually to approximately 150 faculty
members with at least two years of teaching and/or research experience in accredited U.S. colleges,
universities, or technical institutions. SFRP associates must be either U.S. citizens or permanent
residents.

The Graduate Student Research Program (GSRP) is open annually to approximately 100 graduate
students holding a bachelor's or a master's degree; GSRP associates must be U.S. citizens enrolled
full time at an accredited institution.

The High School Apprentice Program (HSAP) annually selects about 125 high school students
located within a twenty mile commuting distance of participating Air Force laboratories.

AFOSR also offers its research associates an opportunity, under the Summer Research Extension
Program (SREP), to continue their AFOSR-sponsored research at their home institutions through the
award of research grants. In 1994 the maximum amount of each grant was increased from $20,000
to $25,000, and the number of AFOSR-sponsored grants decreased from 75 to 60. A separate
annual report is compiled on the SREP.

The numbers of projected summer research participants in each of the three categories and SREP
“grants” are usually increased through direct sponsorship by participating laboratories.

AFOSR's SRP has well served its objectives of building critical links between Air Force research
laboratories and the academic community, opening avenues of communications and forging new
research relationships between Air Force and academic technical experts in areas of national
interest, and strengthening the nation's efforts to sustain careers in science and engineering. The
success of the SRP can be pauged from its growth from inception (see Table 1) and from the
favorable responses the 1997 participants expressed in end-of-tour SRP evaluations (Appendix B).

AFOSR contracts for administration of the SRP by civilian contractors. The contract was first
awarded to Research & Development Laboratories (RDL) in September 1990. After completion of
the 1990 contract, RDL (in 1993) won the recompetition for the basic year and four 1-year options.



2. PARTICIPATION IN THE SUMMER RESEARCH PROGRAM

The SRP began with faculty associates in 1979; graduate students were added in 1982 and high
school students in 1986. The following table shows the number of associates in the program each

year.
YEAR SRP Participation, by Year TOTAL
SFRP GSRP HSAP
1979 70 70
1980 87 87
1981 87 87
1982 91 | 17 108
1983 101 53 154
1984 152 84 236
1985 154 92 246
1986 158 100 42 300
1987 159 101 73 333
1988 153 107 101 361
1989 168 102 103 373
1990 165 121 132 418
1991 170 142 132 444
1992 185 121 159 464
1993 187 117 136 440
1994 192 117 133 442
1995 190 115 137 442
1996 188 109 138 435
1997 148 98 140 427
1998 85 40 88 213




Beginning in 1993, due to budget cuts, some of the laboratories weren’t able to afford to fund as
many associates as in previous years. Since then, the number of funded positions has remained
fairly constant at a slightly lower level.

3. RECRUITING AND SELECTION

The SRP is conducted on a nationally advertised and competitive-selection basis. The advertising
for faculty and graduate students consisted primarily of the mailing of 8,000 52-page SRP brochures
to chairpersons of departments relevant to AFOSR research and to administrators of grants in
accredited universities, colleges, and technical institutions. Historically Black Colleges and
Universities (HBCUs) and Minority Institutions (MIs) were included. Brochures also went to all
participating USAF laboratories, the previous year's participants, and numerous individual
requesters (over 1000 annually).

RDL placed advertisements in the following publications: Black Issues in Higher Education, Winds
of Change, and IEEE Spectrum. Because no participants list either Physics Today or Chemical &
Engineering News as being their source of learning about the program for the past several years,
advertisements in these magazines were dropped, and the funds were used to cover increases in
brochure printing costs.

High school applicants can participate only in laboratories located no more than 20 miles from their
residence. Tailored brochures on the HSAP were sent to the head counselors of 180 high schools in
the vicinity of participating laboratories, with instructions for publicizing the program in their
schools. High school students selected to serve at Wright Laboratory's Armament Directorate
(Eglin Air Force Base, Florida) serve eleven weeks as opposed to the eight weeks normally worked
by high school students at all other participating laboratories.

Each SFRP or GSRP applicant is given a first, second, and third choice of laboratory. High school
students who have more than one laboratory or directorate near their homes are also given first,
second, and third choices.

Laboratories make their selections and prioritize their nominees. AFOSR then determines the
number to be funded at each laboratory and approves laboratories' selections.

Subsequently, laboratories use their own funds to sponsor additional candidates. Some selectees do
not accept the appointment, so alternate candidates are chosen. This multi-step selection procedure
results in some candidates being notified of their acceptance after scheduled deadlines. The total
applicants and  participants for 1998 are shown in this table.



1998 Applicants and Participants
PARTICIPANT TOTAL SELECTEES DECLINING
CATEGORY APPLICANTS SELECTEES
SFRP 382 85 13
(HBCU/MI) (0) (0) (0)
GSRP 130 40 7
(HBCUMD (0) (0) (0)
HSAP 328 88 22
TOTAL 840 213 42

4. SITE VISITS

During June and July of 1998, representatives of both AFOSR/NI and RDL visited each
participating laboratory to provide briefings, answer questions, and resolve problems for both
laboratory personnel and participants. The objective was to ensure that the SRP would be as
constructive as possible for all participants. Both SRP participants and RDL representatives found
these visits beneficial. At many of the laboratories, this was the only opportunity for all participants
to meet at one time to share their experiences and exchange ideas.

5. HISTORICALLY BLACK COLLEGES AND UNIVERSITIES AND MINORITY
INSTITUTIONS (HBCU/MIs)

Before 1993, an RDL program representative visited from seven to ten different HBCU/MIs
annually to promote interest in the SRP among the faculty and graduate students. These efforts were
marginally effective, yielding a doubling of HBCI/MI applicants. In an effort to achieve AFOSR’s
goal of 10% of all applicants and selectees being HBCU/MI qualified, the RDL team decided to try
other avenues of approach to increase the number of qualified applicants. Through the combined
efforts of the AFOSR Program Office at Bolling AFB and RDL, two very active minority groups
were found, HACU (Hispanic American Colleges and Universities) and AISES (American Indian
Science and Engineering Society). RDL is in communication with representatives of each of these
organizations on a monthly basis to keep up with the their activities and special events. Both
organizations have widely-distributed magazines/quarterlies in which RDL placed ads.

Since 1994 the number of both SERP and GSRP HBCU/MI applicants and participants has increased
ten-fold, from about two dozen SFRP applicants and a half dozen selectees to over 100 applicants
and two dozen selectees, and a half-dozen GSRP applicants and two or three selectees to 18
applicants and 7 or 8 selectees.  Since 1993, the SFRP had a two-fold applicant increase and a two-
fold selectee increase. Since 1993. the GSRP had a three-fold applicant increase and a three to four-
fold increase in selectees.




In addition to RDL's special recruiting efforts, AFOSR attempts each year to obtain additional
funding or use leftover funding from cancellations the past year to fund HBCU/MI associates.

SRP HBCU/MI Participation, By Year
YEAR SFRP GSRP
Applicants Participants Applicants Participants
1985 76 23 15 11
1986 70 18 20 10
1987 82 32 32 10
1988 53 ’ 17 23 14
1989 39 15 13 4
1990 43 14 17 3
1991 42 13 8 5
1992 70 13 9 5
1993 60 13 6 2
1994 90 16 11 6
1995 90 21 20 8
1996 119 27 18 7

6. SRP FUNDING SOURCES

Funding sources for the 1998 SRP were the AFOSR-provided slots for the basic contract and

laboratory funds. Funding sources by category for the 1998 SRP selected participants are shown
here.




1998 SRP FUNDING CATEGORY SFRP GSRP HSAP
AFOSR Basic Allocation Funds 67 38 75
USAF Laboratory Funds 17 2 13
Slots Added by AFOSR 0 0 0
(Leftover Funds)
HBCU/MI By AFOSR 0 0 N/A
(Using Procured Addn’l Funds)
TOTAL 84 40 88
7. COMPENSATION FOR PARTICIPANTS
Compensation for SRP participants, per five-day work week, is shown in this table.
1998 SRP Associate Compensation
PARTICIPANT CATEGORY | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 1997 1998
Faculty Members $690 | $718 | $740 | $740 | $740 | $770 | $770 | $793
Graduate Student $425 | $442 | $455 | $455 | $455 | $470 | $470 | $484
(Master's Degree)
Graduate Student $365 | $380 | $391 | $391 | $391 | $400 | $400 | $412
(Bachelor's Degree)
High School Student $200 | $200 | $200 | $200 | $200 | $200 | $200 | $200
(First Year)
High School Student $240 | $240 | $240 | $240 | $240 | $240 | $240 | $240
(Subsequent Years) ‘

The program also offered associates whose homes were more than 50 miles from the laboratory an
expense allowance (seven days per week) of $52/day for faculty and $41/day for graduate students.
Transportation to the laboratory at the beginning of their tour and back to their home destinations at
the end was also reimbursed for these participants. Of the combined SFRP and GSRP associates,

65 % claimed travel reimbursements at an average round-trip cost of $730.

Faculty members were encouraged to visit their laboratories before their summer tour began. All
costs of these orientation visits were reimbursed. Forty-three percent (85 out of 188) of faculty
associates took orientation trips at an average cost of $449. By contrast, in 1993, 58 % of SFRP
associates clected to take an orientation visits at an average cost of $685; that was the highest

-



percentage of associates opting to take an orientation trip since RDL has administered the SRP, and
the highest average cost of an orientation trip.

Program participants submitted biweekly vouchers countersigned by their laboratory research focal
point, and RDL issued paychecks so as to arrive in associates' hands two weeks later.

This is the third year of using direct deposit for the SFRP and GSRP associates. The process went
much more smoothly with respect to obtaining required information from the associates, about 15%
of the associates’ information needed clarification in order for direct deposit to properly function as
opposed to 7% from last year. The remaining associates received their stipend and expense
payments via checks sent in the US mail.

HSAP program participants were considered actual RDL employees, and their respective state and
federal income tax and Social Security were withheld from their paychecks. By the nature of their
independent research, SFRP and GSRP program participants were considered to be consultants or
independent contractors. As such, SFRP and GSRP associates were responsible for their own
income taxes, Social Security, and insurance.

8. CONTENTS OF THE 1998 REPORT

The complete set of reports for the 1998 SRP includes this program management report (Volume 1)
augmented by fifteen volumes of final research reports by the 1998 associates, as indicated below:

1998 SRP Final Report Volume Assignments

LABORATORY SFRP GSRP HSAP
Armstrong 2 7 12
Phillips 3 8 i3
Rome 4 9 14
Wright SA, 5B 10 15
AEDC, ALCs, USAFA, WHMC 6 11




APPENDIX A -- PROGRAM STATISTICAL SUMMARY

A. Colleges/Universities Represented

Selected SFRP associates represented 169 different colleges, universities, and institutions,
GSRP associates represented 95 different colleges, universities, and institutions.

B. States Represented

SFRP -Applicants came from 47 states plus Washington D.C. Selectees represent 44 states

GSP.P - Applicants came from 44 states. Selectees represent 32 states.

HSAP - Applicants came from thirteen states. Selectees represent nine states.

Total Number of Participants

SFRP 85

GSRP 40

HSAP 88

TOTAL 213

Degrees Represented
SFRP GSRP TOTAL

Doctoral 83 0 83
Master's 1 3 4
Bachelor's 0 22 22
TOTAL 186 25 109

A-1



SFRP Academic Titles

Assistant Professor 36
Associate Professor 34
Professor 15
Instructor 0
Chairman 0
Visiting Professor 0
Visiting Assoc. Prof. 0
Research Associate 0

TOTAL 85

Source of Learning About the SRP

Category Applicants Selectees
Applied/participated in prior years 177 47
Colleague familiar with SRP 104 24
Brochure mailed to institution 101 21
Contact with Air Force laboratory 101 39
IEEE Spectrum 12 1
BIIHE | 1 0
Other source 117 30

TOTAL 616 162




APPENDIX B -- SRP EVALUATION RESPONSES

1. OVERVIEW

Evaluations were completed and returned to RDL by four groups at the completion of the SRP. The
number of respondents in each group is shown below.

Table B-1. Total SRP Evaluations Received

Evaluation Group Responses
SFRP & GSRPs 100
HSAPs 75
USAF Laboratory Focal Points 84
USAF Laboratory HSAP Mentors 6

All groups indicate unanimous enthusiasm for the SRP experience.

The summarized recommendations for program improvement from both associates and laboratory
personnel are listed below:

A. Better preparation on the labs’ part prior to associates' arrival (i.e., office space,
computer assets, clearly defined scope of work).

B. Faculty Associates suggest higher stipends for SFRP associates.

C. Both HSAP Air Force laboratory mentors and associates would like the summer tour
extended from the current 8 weeks to either 10 or 11 weeks; the groups state it takes
4-6 weeks just to get high school students up-to-speed on what’s going on at
laboratory. (Note: this same argument was used to raise the faculty and graduate
student participation time a few years ago.)

B-1



2. 1998 USAF LABORATORY FOCAL POINT (LFP) EVALUATION RESPONSES

The summarized results listed below are from the 84 LFP evaluations received.

1. LFP evaluations received and associate preferences:

Table B-2. Air Force LFP Evaluation Responses (By Type)

How Many Associates Would You Prefer To Get ? (% Response)

SFRP GSRP (w/Univ Professor) | GSRP (w/o Univ Professor)

Lab Evals 0 1 2 3+ 0 1 2 3+ 0 1 2 3+
Recv’d

AEDC 0 - - - - - - - - - - - -
WHMC 0 - - - - - - - - - - - -
AL 7 28 28 28 14 54 14 28 0 86 0 14 0
USAFA 1 0 100 0 0 100 0 0 0 0 100 0 0
PL 25 40 40 16 4 88 12 0 0 84 12 4 0
RL 5 60 40 0 0 80 10 0 0 100 0 0 0
WL 46 30 43 20 6 78 17 4 0 93 4 2 0
Total 84 2% 50% 13% 5% [ 80% 11% 6% 0% | 73% 23% 4% 0%

LFP Evaluation Summary. The summarized responses, by laboratory, are listed on the following
page. LFPs were asked to rate the following questions on a scale from 1 (below average) to 5

(above average).

2. LFPs involved in SRP associate application evaluation process:

a. Time available for evaluation of applications:

b. Adequacy of applications for selection process:
3. Value of orientation trips: '
4. Length of research tour:
5 Benefits of associate's work to laboratory:
Benefits of associate's work to Air Force:
Enhancement of research qualifications for LFP and staff:
Enhancement of research qualifications for SFRP associate: ‘
Enhancement of research qualifications for GSRP associate:
Enhancement of knowledge tor LFP and staff:
Enhancement of knowledge for SFRP associate:

c. Enhancement of knowledge for GSRP associate:
8. Value of Air Force and university links:
9. Potential for future collaboration:
10.  a. Your working relationship with SFRP:

b. Your working relationship with GSRP:

11. Expenditure of your time worthwhile:
(Continued on next page)

6.
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12. Quality of program literature for associate:
13.  a. Quality of RDL's communications with you:

b. Quality of RDL's communications with associates:
14. Overall assessment of SRP:

Table B-3. Laboratory Focal Point Reponses to above questions

AEDC AL USAF PL RL WHMC WL
A
# Evals Recv'd 0 7 1 14 5 0 46
Question #

2 - 86 % 0% 8% 80 % - 85 %
2a - 4.3 n/a 3.8 4.0 - 3.6
2b - 4.0 n/a 39 4.5 - 4.1
3 - 4.5 n/a 4.3 4.3 - 3.7
4 - 4.1 4.0 4.1 4.2 - 3.9
Sa - 4.3 5.0 4.3 4.6 - 4.4
5b - 4.5 n/a 4.2 4.6 - 4.3
6a - 4.5 5.0 4.0 4.4 - 4.3
6b - 4.3 n/a 4.1 5.0 - 4.4
6¢ - 3.7 5.0 35 5.0 - 4.3
7a - 4.7 5.0 4.0 4.4 - 4.3
7b - 4.3 n/a 4.2 5.0 - 4.4
7c - 4.0 5.0 3.9 5.0 - 4.3
8 - 4.6 4.0 4.5 4.6 - 4.3
-9 - 4.9 5.0 4.4 4.8 - 4.2
10a - 5.0 n/a 4.6 4.6 - 4.6
10b - 4.7 5.0 3.9 5.0 - 4.4
11 - 4.6 5.0 44 4.8 - 4.4
12 - 4.0 4.0 4.0 4.2 - 3.8
13a - 3.2 4.0 3.5 3.8 - 34
13b - 34 4.0 3.6 4.5 - 3.6
14 - 4.4 5.0 4.4 4.8 - 4.4




3. 1998 SFRP & GSRP EVALUATION RESPONSES

The summarized results listed below are from the 120 SFRP/GSRP evaluations received.

Associates were asked to rate the following questions on a scale from 1 (below average) to 5 (above
average) - by Air Force base results and over-all results of the 1998 evaluations are listed after the
questions.

The match between the laboratories research and your field:
Your working relationship with your LFP:
Enhancement of your academic qualifications:
Enhancement of your research qualifications:
Lab readiness for you: LFP, task, plan:
Lab readiness for you: equipment, supplies, facilities:
Lab resources:
Lab research and administrative support:
Adequacy of brochure and associate handbook:
10. RDL communications with you:
11. Overall payment procedures:
12. Overall assessment of the SRP:
13. a. Would you apply again?
b. Will you continue this or related research?
14. Was length of your tour satisfactory?
15. Percentage of associates who experienced difficulties in finding housing:
16. Where did you stay during your SRP tour?

Ao Al o o

a. At Home:
b. With Friend:
C. On Local Economy:
d. Base Quarters:
17. Value of orientation visit:
a. Essential:
b. Convenient:
C. Not Worth Cost:
d Not Used:

SFRP and GSRP associate’s responses are listed in tabular format on the following page.




Table B4. 1997 SFRP & GSRP Associate Responses to SRP Evaluation

Armold | Brooks § Edward | Eglin ] Griffis | Hanscom | Kelly J Kirtland § Lackland | Robins | Tyndall | WPAFB | averag
s e

# 6 48 6 4 3 19 3 2 1 2 10 8s 257
res
1148 ] 44 46 | 47] 44 4.9 4.6 | 4.6 5.0 5.0 4.0 4.7 4.6
2 1501 46 4.1 149} 47 4.7 501 47 5.0 5.0 4.6 4.8 4.7
3 145] 44 40 J46 ) 43 4.2 431 44 5.0 5.0 4.5 4.3 4.4
4 143145 38 146] 44 4.4 43| 4.6 5.0 4.0 4.4 4.5 4.5
51451 43 33 1481} 44 4.5 43 | 4.2 5.0 5.0 3.9 4.4 4.4
6 |1 431 43 3.7 147] 44 4.5 40| 3.8 5.0 5.0 3.8 4.2 4.2
71451 44 42 1481 45 4.3 431 4.1 5.0 5.0 4.3 4.3 4.4
8 145 1 46 3.0 149 44 4.3 431 45 5.0 5.0 4.7 4.5 4.5
9 1471 45 4.7 145] 43 4.5 471 43 5.0 5.0 4.1 4.5 4.5

et
[—]

4.2 | 44 47 144] 4.1 4.1 40 ] 4.2 5.0 4.5 3.6 4.4 4.3

[
[

3.8 1 41 45 140} 3.9 4.1 401 4.0 3.0 4.0 3.7 4.0 4.0

ot
[ )

5.7 | 4.7 43 1491 45 4.9 47 ] 4.6 5.0 4.5 4.6 4.5 4.6

Numbers below are percentages

3a 1 83 9 83 93 87 75 100 81 100 100 100 86 87

13v 1 100 | 89 83 100} 94 98 100 94 100 100 100 94 93

141 83 96 100 | 90 87 80 100 92 160 100 70 84 88

s 17| 6 0 331 2 76 | 33 ] 2 0 100 | 20 8 39
6| - T 26| 17 9] 38 23 [33] 4 - - - 30
166 | 100 | 33 - Tl - 8 - - - - 36 2
| - J a1 | 83 o] e 6 |67 ] 9 100 | 100 | 64 68
16d | - - - . - R R . - - - 0
| - 133|100 [ 17 ] 50 14 |67 | 39 - 50 | 40 31 | 35
il - | 21 - 17 10 14 - | 24 - 50 | 20 16 | 16
e |- - - - | 10 7 - R - - - 2 3
17d | 100 | 46 - L6 | 30 0 |33 37 100 - 40 51 | 46

t




4. 1998 USAF LABORATORY HSAP MENTOR EVALUATION RESPONSES

Not enough evaluations received (5 total) from Mentors to do useful summary.
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5. 1998 HSAP EVALUATION RESPONSES
The summarized results listed below are from the 23 HSAP evaluations received.

HSAP apprentices were asked to rate the following questions on a scale from
1 (below average) to 5 (above average)

1. Your influence on selection of topic/type of work.
2. Working relationship with mentor, other lab scientists.
3. Enhancement of your academic qualifications.
4. Technically challenging work.
5. Lab readiness for you: mentor, task, work plan, equipment.
6. Influence on your career.
7. Increased interest in math/science.
8. Lab research & administrative support.
9. Adequacy of RDL’s Apprentice Handbook and administrative materials.
10. Responsiveness of RDL communications.
11. Overall payment procedures.
12. Overall assessment of SRP value to you.
13. Would you apply again next year? Yes (92 %)
14. Will you pursue future studies related to this research? Yes (68 %)
15. Was Tour length satisfactory? Yes (82 %)
Amold Brooks Edwards Eglin Griffiss ~ Hanscom | Kirtland  Tyndall | WPAFB  Totals
# 5 19 7 15 13 2 7 5 40 113
resp
1 2.8 3.3 34 3.5 34 4.0 3.2 3.6 3.6 3.4
2 4.4 4.6 4.5 4.8 4.6 4.0 4.4 4.0 4.6 4.6
3 4.0 4.2 4.1 4.3 4.5 5.0 4.3 4.6 4.4 4.4
4 3.6 3.9 4.0 4.5 4.2 5.0 4.6 3.8 4.3 4.2
5 4.4 4.1 3.7 4.5 4.1 3.0 3.9 3.6 3.9 4.0
6 3.2 3.6 3.6 4.1 3.8 5.0 3.3 3.8 3.6 3.7
7 2.8 4.1 4.0 3.9 3.9 5.0 3.6 4.0 4.0 39
8 3.8 4.1 4.0 4.3 4.0 4.0 4.3 3.8 4.3 4.2
9 4.4 3.6 4.1 4.1 3.5 4.0 3.9 4.0 3.7 3.8
10 ] 4.0 3.8 4.1 3.7 4.1 4.0 3.9 2.4 3.8 3.8
111 4.2 4.2 3.7 3.9 3.8 3.0 3.7 2.6 3.7 3.8
12 ] 4.0 4.5 4.9 4.6 4.6 5.0 4.6 4.2 4.3 4.5
Numbers below are percentages
131 60% 95% 100% 100 85% 100% | 100% 100% | 90%  92%
%
14 | 20% 80% 1%  80% | 54% 100% 71%  80% 65% 68%
15 | 100% 70% 71% 100 100%  50% 86% 60% 80% 82%
%
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A STUDY OF OPTIMAL FINITE-THRUST SPACECRAFT
TRAJECTORIES FOR THE TECHSAT 21 MISSION

Benjamin J. Bernocco
Graduate Student

Department of Aerospace Engineering
The Pennsylvania State University

Abstract

A preliminary study of optimal finite-thrust spacecraft trajectories for the TechSat 21 mission was
examined. The study looked only at one satellite orbiting in the ecliptic plane, i.e. two-dimensional motion, with no
explicit orbit perturbations included. Optimization of the spacecraft trajectory was accomplished using a direct
collocation with nonlinear programming approach. This approach requires that the equations of motion and
integrals of the motion for the spacecraft trajectory be calculated from state vector values and then feed into an
optimization subroutine. The optimization subroutine changes the state vector values to minimize the objective
function, i.e. the thruster firing time, which is subject to constraints dictated by the mission requirements. An
example simulation for this mission was performed. The trajectory was divided up into a sequence of twelve thrust
arcs separated by twelve coast arcs. Constraints were placed on the objective function to insure that the state vector
values yielded results that represented an actual, predetermined trajectory. A general perturbation was incorporated
into the problem by including thrust acceleration terms in the equations of motion. The initial conditions used to
start the process were chosen to be the state vector values for a pure Keplerian orbit with no perturbations. After
only two iterations the code converged to an optimized solution. This solution was very close to the initial
condition with only the thrust level and thruster firing times being altered by the program. It is a reasonable s;_olution
since the thrusters are only used to maintain the same orbit, hence most of the state vector values would not change.
The solution was plugged back into the code as initial conditions and the code yielded the same solution after one
iteration. Although this does not guarantee a global minimum was found, it instills confidence that the solution is a
valid one. Future work to be done includes expanding the code to three dimensions, including perturbation effects

like atmospheric drag, luni-solar, and the Earth’s oblateness, and including multiple satellites in the analysis.




A STUDY OF OPTIMAL FINITE-THRUST SPACECRAFT
TRAJECTORIES FOR THE TECHSAT 21 MISSION

Benjamin J. Bernocco
Introduction
The Air Force is currently looking for new technologies to take it into the twenty-first century. One of
those technologies high on the Air Force’s list is Space-Based Radar (SBR). SBR will provide the Air Force with a
virtual presence that will allow constant monitoring of situations around the globe. It will be able to provide theater-
wide, near real-time, undeniable, all-weather, and round-the-clock surveillance of any place on the globe. The
TechSat 21 program was setup to help make the concept of SBR a reality for the twenty-first century. It will consist
of clusters of small, lightweight formation flying satellites. These satellite clusters will form a virtual satellite that
functions cooperatively as a multiple aperture sparse array. This array would be capable of active sensing,
communications, and passive radiometry. Each satellite in a cluster could receive its own as well as other satellites’
radar pulses. The radar pulses are of different frequencies and each satellite performs range/Doppler and angle of
arrival processing on the pulses [1]. In order to maximize data collection time of radar signals, the thruster firing
time of the satellite must be minimized. The optimization of finite-thrust spacecraft trajectories can be

accomplished by a method using direct collocation with nonlinear programming.

Methodology

This study deals with the optimization of finite-thrust spacecraft trajectories by using the direct collocation
with nonlinear programming (DCNLP) approach. A complete history of the development of the DCNLP approach
can be found in references 2 and 3. The DCNLP approach approximates the spacecraft trajectory with piecewise
polynomials that are represented by state and control variables at a given number of nodes. State variables are
stored in the state vector x and the control variables are stored in the control vector u . The spacecraft trajectory is
divided up into a series of thrust arcs and coast arcs and the thrust arcs are subdivided into evenly spaced segments.
Thrust arcs and coast arcs require different means of evaluation. In a thrust arc segment each state variable has a
state trajectory which is taken to be a Hermite cubic. This is a “unique cubic that goes through the endpoints of the

thrust segment with the appropriate derivatives that are dictated by the evaluation of the differential equations of
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motion at the endpoints” [2]. Each control variable is assumed to have a linear control trajectory across the thrust -
segment. At the center of each thrust segment a collocation point is found and then the difference between the
derivative of the Hermite cubic at the collocation point and the trajectory equations of motion evaluated at the
collocation point is calculated. This difference is called the defect and it is one of the constraints that the objective
function, the thruster firing time, is subject to. When the defect is zero the differential equations of motion are
satisfied at the collocation point and the endpoints. Allowing the trajectory equations of motion to be given by
X = f(x,u) and the length of time of a thrust segment to be T, the Hermite interpolated state vector at the collocation
point is given by
x. = (172)-(x1 + x0) + (TIB)[f (%1, w) - (%1, )] ¢))
where x; and x, are the state vectors at the left and right nodes. The linearly interpolated control vector is given by
u. = (1/2)-(ny + 1) )
where u; and u, are the control vectors at the left and right nodes. The derivative of the Hermite interpolated state
vector at the collocation point is
X =-[312-T))-(x1 - x,) - (1/4) [f (%1, ) + f(Xr, 1)) 3
Finally, the defect vector is
d=flx.u) - X, )]
where both the equations of motion and the derivative of the Hermite interpolated state vector are evaluated at the
collocation point [2],[3].
For the case of two-dimensional motion, which this study focuses on, there are five state variables and one
control variable. Based on this information there will be five equations of motion for the system. In polar

coordinates using canonical units ( 1 = 1.0) the two-dimensional equations of motion are

X, =Xx3 (5a)
X,= x4/ X1 (5b)
%= x4 X = 1/ X% + xs sin(uy) (5¢)
%, = -x3X4 ] X1 + x5 -cos(u;) (5d)
xXg= x52/ c (5e)
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where x; is the orbital radius, x; is the true anomaly, x; is the velocity component along the radial direction, x, is the
velocity component along the local horizontal direction, x5 is the magnitude of the thrust acceleration, u; is the thrust
vector angle measured from the local horizontal direction, and c is the rocket exhaust velocity [2],[4],[5].

A coast arc is handled differently from a thrust arc since its solution can be determined analytically. For a
coast arc, integrals of the motion are calculated at the left and right endpoints of the arc and then subtracted to yield
a generalized defect. When the generalized defect is zero, the integrals of motion at the left and right endpoints of
the coast arc are equal. For the case of two-dimensional motion four integrals of the motion are needed. The
integrals of motion chosen for this study are angular momentum, specific energy, longitude of periapsis, and the fact
that the thrust acceleration must be zero across the coast arc [2]. The two-dimensional integrals of the motion in

polar coordinates using canonical units (. = 1.0) are

Qi(x) = X1 - X4 (6a)

Qy(x) = (x5 + x4) /2.0 - 1.0/ x; (6b)
Qx(x) = X, + tan" [ -x3x4/ ( X4* = 1.0/ x1)) (6c)
Qu(x) = x5 (6d)

where Q;(x) is the angular momentum of the orbit, Q,(x) is the specific energy of the orbit, Q;(x) is the longitude of
periapsis of the orbit, and Q(x) is the thrust magnitude [2],[4],[5]. The generalized defect for the integrals of the
motion is written as

q=Q(x) - Qx) )
Besides the defect and generalized defect vectors, equality and inequality constraints can also be added to the
analysis. These are totally up the user and can include things like constraints on the initial or final conditions or path
constraints. All of the defects and constraints are used as bounds on the objective function, what you want to
minimize. In the case of spacecraft trajectories the objective function is the sum of the thrust arc durations. The
state, control, and defect variables for both thrust and coast arcs plus any other problem constraints make up a
nonlinear programming problem. To solve this problem the variables must first be assembled into state and
constraint vectors. The state and control vectors and the thrust arc duration time are assembled into the nonlinear
programming ( NLP) state vector as follows

T T T T T T T
X =[X],u1,X2 sUz sy ooy Xy Uy )t]vt2s---’tk] (8)
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where X is the NLP state vector, n is the number of nodes that the trajectory is divided into, t is the thrust arc
duration time, and k is the number of thrust arcs on the trajectory [2]. The defects, generalized defects, equality
constraints, and inequality constraints are assembled into the NLP constraint vector as follows

C'=[dy, qi,dz o .., Ay G by, by o By, 81, 22 00 81 ®
where C is the NLP constraint vector, m is the number thrust arc segments, p is the number of coast arcs, h are the
equality constraints, j is the number of equality constraints, g are inequality constraints, and i is the number of
inequality constraints [2]. The NLP state vector must always be larger in length than the NLP constraint vector or
an optimized solution will not be found. Once the NLP state and constraint vectors are found, a solution can be
computed by placing these vectors into an optimization subroutine.

For this study the optimization subroutine used was the Sequential Quadratic Programming (SQP)
subroutine [6]. This subroutine approximates the nonlinear problem with a sequence of quadratic programming
problems. It minimizes the objective function subject to making the defects and constraints values as small as
possible. The SQP subroutine must be provided with the initial state and control conditions and with subroutines
that evaluate the trajectory equations of motion, the Hermite cubic and its derivative, the thrust arc defects, the
generalized defects, any constraints included, and the objective function. It also requires the size of the NLP state
and constraint vectors as a check to make sure that the problem is solvable.

The two-dimensional TechSat 21 example was setup using the following orbital parameters in canonical
units (= 1.0): 1) the orbital period equals 2 TU; 2) the semi-major axis equals 1.1098 DU/TU; 3) the eccentricity
equals 0.0096; 4) the Earth’s gravitational constant at sea level equals 1.00 DU/T U2, and 5) the rocket engine
specific impulse equals 0.37183 TU. One DU equals 6378.1 km and one TU equals 806.811 seconds. The
trajectory was divided into twelve thrust arcs and twelve coast arcs with each thrust arc divided into four equal
segments. This arrangement occurs over a two-year period and results in a trajectory composed of sixty nodes. The
equality constraints used required that the initial and final eccentricity, angular momentum, and specific energy
calculated from the state and control variables must equal the actual values for the orbit described above. No
inequality constraints were used for this study. The initial conditions for the orbit were based on a perfectly

Keplerian orbit and the thrust level and angle were randomly guessed at. Results based on this setup follow.




Results
The initial conditions in Table 1 below were input into the SQP subroutine, which then optimized the state

and control values to yield a minimum thruster firing time.

Table 1: Trajectory Initial Conditions for the SQP Subroutine

Orbit True Thrust | Thrust | Thrust| Orbit True Thrust | Thrust | Thrust
Radius | Anomaly (kg- Angle | Firing [ Radius | Anomaly (kg- Angle | Firing
(DbU) (rad.) DU/TU% | (rad.) | Time (DU) (rad.) DU/TU? | (rad.) | Time
(TU) (TU)

1.088648 | 0.0000 8.00E-32 | -0.5236 | 0.1 1.088648 6.2832 8.00E-32 | -0.5236 | 0.1
1.088868 0.2094 8.00E-32 | -0.5236 | 0.1 1.088868 6.4926 8.00E-32 | -0.5236 | 0.1
1.089527 0.4189 8.00E-32 | -0.5236 | 0.1 1.089527 6.7021 8.00E-32 | -0.5236 | 0.1
1.090626 | 0.6283 8.00E-32 | -0.5236 | 0.1 1.090626 | 6.9115 8.00E-32 | -0.5236 | 0.1
1.092055 0.8378 | 0.00E+00 0 0 1.092055 | 7.1209 | 0.00E+00 0 0

1.093814 1.0472 8.00E-32 | -0.5236 | 0.1 1.093814 | 7.3304 8.00E-32 | -0.5236 | 0.1
1.095902 1.2566 8.00E-32 | -0.5236 | 0.1 1.095902 | 7.5398 8.00E-32 | -0.5236 | 0.1
1.097991 1.4661 8.00E-32 | -0.5236 | 0.1 1.097991 7.7493 8.00E-32 | -0.5236 | 0.1
1.100189 1.6755 8.00E-32 | -0.5236 | 0.1 1.100189 | 7.9587 8.00E-32 | -0.5236 | 0.1
1.102388 1.8850 | 0.00E+00 0 0 1.102388 8.1681 | 0.00E+00 ] 0

1.104366 | 2.0944 8.00E-32 | -0.5236 | 0.1 1.104366 | 8.3776 8.00E-32 | -0.5236 | 0.1
1.106235 2.3038 8.00E-32 | -0.5236 | 0.1 1.106235 8.5870 8.00E-32 | -0.5236 | 0.1
1.107664 2.5133 8.00E-32 | -0.5236 | 0.1 1.107664 8.7965 8.00E-32 | -0.5236 | 0.1
1.108873 2.7227 8.00E-32 | -0.5236 | 0.1 1.108873 | 9.0059 8.00E-32 | -0.5236 | 0.1
1.109532 2.9322 | 0.00E+00 0 0 1.109532 | 9.2153 | 0.00E+00 0 0

1.109752 3.1416 8.00E-32 | -0.5236 | 0.1 1.109752 | 9.4248 8.00E-32 | -0.5236 | 0.1
1.109532 3.3510 8.00E-32 | -0.5236 | 0.1 1.109532 | 9.6342 8.00E-32 | -0.5236 | 0.1
1.108873 3.5605 8.00E-32 | -0.5236 | 0.1 1.108873 | 9.8437 8.00E-32 | -0.5236 | 0.1
1.107664 3.7699 8.00E-32 | -0.5236 | 0.1 1.107664 | 10.0531 | 8.00E-32 | -0.5236 | 0.1
1.106235 3.9794 | 0.00E+00 0 0 1.106235 | 10.2625 | 0.00E+00 0 0

1.104366 | 4.1888 8.00E-32 | -0.5236 | 0.1 1.104366 | 10.4720 | 8.00E-32 | -0.5236 ] 0.1
1.102388 4.3982 8.00E-32 | -0.5236 { 0.1 1.102388 | 10.6814 | 8.00E-32 | -0.5236 | 0.1
1.100189 | 4.6077 8.00E-32 | -0.5236 | 0.1 1.100189 | 10.8909 | 8.00E-32 | -0.5236 | 0.1
1.097991 48171 8.00E-32 | -0.5236 | 0.1 1.097991 | 11.1003 | 8.00E-32 | -0.5236 | 0.1
1.095902 5.0265 | 0.00E+00 0 0 1.095902 | 11.3097 | 0.00E+00 0 0

1.093814 5.2360 8.00E-32 | -0.5236 | 0.1 1.093814 | 11.5192 | 8.00E-32 | -0.5236 | 0.1
1.092055 5.4454 8.00E-32 | -0.5236 [ 0.1 1.092055 | 11.7286 | 8.00E-32 | -0.5236 | 0.1
1.090626 | 5.6549 8.00E-32 | -0.5236 [ 0.1 1.090626 | 11.9381 | 8.00E-32 | -0.5236 | 0.1
1.089527 5.8643 8.00E-32 | -0.5236 [ 0.1 1.089527 | 12.1475 | 8.00E-32 | -0.5236 | 0.1
1.088868 6.0737 | 0.00E+00 0 0 1.088868 | 12.3569 | 0.00E+00 0 0
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This data was plugged into the SQP subroutine along with the subroutines needed for the DCNLP calculations and

after only two iterations it converged to an optimized solution. The optimized trajectory values are shown in Table

2.

Table 2: Optimized Trajectory Values

Orbit True Thrust | Thrust | Thrust| Orbit True Thrust | Thrust | Thrust

Radius | Anomaly (kg- Angle | Firing [ Radius | Anomaly (kg- Angle | Firing
(DU) (rad.) | DU/TU? | (rad.) | Time | (DU) (rad.) | DU/TU? | (rad.) | Time
(TU) (TU)

1.088648 | 0.0880 | 2.11E-05 | 0.4363 | 0.1568 | 1.096672 [ 6.4667 2.47E-05 | 0.4363 | 0.1350
1.089527 0.2240 | 2.11E-05 | 0.4363 | 0.1568 | 1.096892 | 6.5568 2.49E-05 | 0.4363 | 0.1350
1.090736 | 0.3599 2.11E-05 | 0.4363 | 0.1568 | 1.097221 6.6469 | 2.50E-05 | 0.4363 | 0.1350
1.092165 0.4958 2.09E-05 | 0.4363 | 0.1568 | 1.097771 6.7369 | 2.47E-05 | 0.4363 | 0.1350
1.093814 | 0.6317 | 0.00E+00 0 0 1.098431 6.8270 | 0.00E+00 0 0
1.104036 13169 | 2.11E-05 | 04363 [0.1295 | 1.104146 | 7.5420 | 2.48E-05 | 0.4363 | 0.1518
1.105026 1.3953 2.06E-05 | 0.4363 | 0.1295| 1.105026 | 7.6671 2.47E-05 | 0.4363 | 0.1518
1.106125 1.4737 2.19E-05 | 0.4363 | 0.1295| 1.106015 | 7.7922 2.47E-05 | 0.4363 | 0.1518
1.107334 1.5521 2.33E-05 | 0.4363 | 0.1295 | 1.107114 | 7.9172 | 2.45E-05 | 0.4363 | 0.1518
1.108433 1.6305 | 0.00E+00 0 0 1.108104 | 8.0423 | 0.00E+00 0 0
1.107554 | 2.1322 | 2.28E-05 | 0.4363 | 0.1990 | 1.112061 8.2113 2.47E-05 | 0.4363 | 0.2566
1.110082 2.3561 2.31E-05 | 0.4363 | 0.1990 | 1.114809 8.5557 2.47E-05 | 0.4363 | 0.2566
1.11228 2.5800 | 2.29E-05 | 0.4363 | 0.1990 | 1.117007 8.9002 | 2.46E-05 | 0.4363 |0.2566
1.114039 2.8039 2.21E-05 | 0.4363 | 0.1990 | 1.118656 | 9.2447 2.46E-05 | 0.4363 | 0.2566
1.115358 3.0278 | 0.00E+00 0 0 1.119645 | 9.5892 | 0.00E+00 0 0
1.11272 3.2260 | 2.30E-05 | 0.4363 | 0.1852 | 1.119315 9.3690 | 2.21E-05 | 0.4363 | 0.2199
1.11327 34210 | 2.31E-05 | 0.4363 | 0.1852 | 1.118766 | 9.6358 2.94E-05 | 0.4363 | 0.2199
1.11338 3.6160 | 2.34E-05 | 0.4363 [ 0.1852 | 1.117557 | 9.9044 1.92E-05 | 0.4363 | 0.2199
1.11316 3.8110 | 2.30E-05 | 0.4363 |0.1852 | 1.115688 | 10.1686 | 1.64E-05 | 0.4363 | 0.2199

1.1125 4.0059 | 0.00E+00 0 0 1.11349 10.4348 | 0.00E+00 0 0
1.111841 4.1750 | 2.46E-05 | 0.4363 |0.1895 | 1.109313 | 10.4393 | 0.00E+00 0 0.1834
1.110632 | 4.3789 2 49E-05 | 0.4363 | 0.1895 | 1.107224 | 10.6302 | 5.47E-06 | 0.4363 | 0.1834
1.109313 | 4.5827 2 40E-05 | 0.4363 | 0.1895| 1.105026 | 10.8213 | 1.03E-06 | 0.4363 [ 0.1834
1.107994 | 4.7866 2 50E-05 | 0.4363 | 0.1895| 1.102717 | 11.0124 | 1.00E-06 | 0.4363 | 0.1834
1.106675 | 4.9904 | 0.00E+00 0 0 1.100409 | 11.2035 | 0.00E+00 0 0
1.098101 5.4931 5 47TE-05 | 0.4363 | 0.1114 | 1.093484 | 11.7332 | 5.27E-07 | 0.4363 | 0.1162
1.098431 55336 | 2.48E-05 | 0.4363 | 0.1114 [ 1.092495 | 11.7843 | 5.27E-07 | 0.4363 | 0.1162
1.09887 55740 | 2.48E-05 | 0.4363 | 0.1114 | 1.091506 | 11.8354 | 5.27E-07 | 0.4363 | 0.1162
1.09942 5.6145 2 48E-05 | 0.4363 | 0.1114 | 1.090626 | 11.8867 | 5.27E-07 [ 0.4363 | 0.1162
1.09986 5.6549 | 0.00E+00 0 0 1.089857 | 11.9377 | 0.00E+00 0 0

As can be seen from Table 1 and 2, the optimized trajectory is close to the original perfect Keplerian orbit. This

result is true because the thrusters are only firing to maintain the same orbit; to cancel out the general perturbation

included in the equations of motion of the system via the thrust acceleration terms. Figure 1 below shows a plot of
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the trajectory initial conditions and the final optimized trajectory values. The Earth is not shown to scale on this

figure.

1.2 - = — — Trajectory Initial Conditions

Optimized Trajectory Values
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Figure 1: Initial and Optimized Trajectories

The major differences between the initial and the optimized values are the thrust magnitude, the thrust
angle, and the thruster firing time. For the thrust level the optimization code gave values which stayed between 0.1
to 10 milli-Newtons of thrust. At one point in the trajectory it erased a thrust segment to make a longer coast arc.
The thrust angle was changed to a fix value of 0.4363 radians for all thrust segments. This seems odd that the thrust
segments would all require the same thrust angle but no error was found in the coding of the problem. It may'have
something to do with the way the optimization subroutine handles the control values; this problem will have to be
looked at in greater detail. The thruster firing time increased from its initial value but this was necessary in order for
the objective function to meet the defect and equality constraints placed on it. After the first run the optimized
trajectory values were placed back into the SQP subroutine to produce new optimized values. The second time

through the routine finished after only one iteration. It gave the exact same solution as is shown in Table 2. This
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process was repeated five times in a row and each time yielded the same solution as in Table 2 after one iteration. -
Such consistency in getting back the same answer implies that this solution is a fairly optimized solution to the
problem and it could be used for real mission planning. Next the initial conditions were offset slightly from the
original values and it converged to basically the same solution with only the radius and the true anomaly values
changing slightly. A really bad guess for the trajectory was attempted but the code couldn’t converge to a solution.
The SQP may not be robust enough for bad guesses so a more efficient and robust subroutine like NPSOL or
MINOS should be used if the there is no good guess for the optimized solution.

Now that the two-dimensional code is working, a three-dimensional code needs to be developed since all
real orbits are three-dimensional. Currently the three-dimensional equations of motion and integrals of the motion
are developed and only need to be coded into the DCNLP program. Once the three-dimensional code is fully
functional perturbations due to atmospheric drag, luni-solar, and the Earth’s oblateness effect can be included as
well as adding multiple satellites to make a realistic model of the TechSat 21 mission. Numbers returned by a fully

developed three-dimensional code with perturbations could be used for actual future mission planning.

Conclusion

An optimal finite-thrust two-dimensional spacecraft trajectory for the TechSat 21 mission was found using
the direct collocation with nonlinear programming approach. This approach has proven itself to be quite effective at
calculating optimized trajectories. The optimized trajectory was found to be very close to the estimated trajectory,
which instills confidence that the solution is a valid one. Future work includes expanding the code to three-
dimensions, the inclusion of perturbations caused by atmospheric drag and the Earth’s oblateness effects, and the
inclusion of multiple satellites flying in formation. The only improvement to be made is to get a more robust fmd
efficient optimization subroutine like NPSOL or MINOS that can handle bad guesses for the initial conditions. This

would be a great help in situations where no obvious solution is known and would allow greater flexibility in the

choice of initial conditions.
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Structures Using Perturbation Theory
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Boulder, CO 80309-0429

ABSTRACT. Perturbation methods for linear operators are commonly used in the analysis of systems that
tend to deviate linearly from a given reference model. The construction of an operator with a first order
perturbation is investigated and the resulting eigenvalue series is constructed. It is shown that a simplified
perturbation series can be obtained for matrix operators with special structure. The given theory is applied
to a reduced order model (ROM) control scenario and an algorithm for computing an O (£°) eigenvalue
approximation is described. :

INTRODUCTION

Modern modeling of large dimensional physical systems primarily employs
matrix methods, often via finite elements or partial differential equations. Due to
implementation constraints from a control standpoint, however, an adequate model
reduction is needed. Model approximations can be used to design controllers, but
compensation for observation spillover may be required for stability. It has been shown
in [1] that addition of a residual mode filter to the reduced order model controller can
stabilize the entire system in modal coordinates. The question now becomes: What
components of the spectrum were destabilized? An eigenvalue perturbation method,
developed in [3], has been proposed for full rank operators with no multiplicities. In this
paper, we have expanded this technique to consider multiple eigenvalues and also provide
proof of the order of approximation.

Applied mathematicians, engineers and physicists frequently use perturbation
methods to solve a variety of different problems. Even though solutions to intractable
nonlinear differential equations can be approximated using perturbation theory, this
paper’s focus will only encompass linear deviations of finite-dimensional linear
operators. The reader is also referred to an “in-depth” treatment of the perturbation theory
of linear operators [4], where the subsequent derivations become special cases.

The following definitions lay the groundwork for the construction of an
eigenvalue perturbation series. The type of structure imparted upon a matrix operator of
interest is illustrated and the corresponding eigenvalue series is given. An example of the
application to the control design of a spectral system is explained. A proof and the
numerical algorithm for this approach are given in the appendices.

F

OPERATOR PERTURBATIONS




Beginning with an operator with a first order perturbation,
A(e)=A° + A4 M
A" e R"*! (diagonalizable, full rank)
ge C,A4d e R**V
the resolvent of A(¢) is defined by the following inverse:

R(A, A(e)) = [a(e) - A} @

and is analytic everywhere except at the eigenvalues of 4(¢). It has been shown in 3]
that the resolvent can be written in series form,

R4, A&)) = R(A, A°)+ Y R™ (A)e” )
n=1
R™(4)=R(A, 4%) |- A R(A, 20
and the series is convergent if the following inequality holds.
0 S“AA R4, 4%)|lg]< 1
The spectral factorization of A° can be expressed as a sum of S orthogonal eigen-
projections, P,.

— L_ S s
A =UANU" =) P, = 2P =Y L UEU™ (4)
k=1 I=1 =1
0 0 0
0 I 0
El = mxm
0 0 0

Note that S <N if any of the eigenvalues in A are repeated. The multiplicity of the /®
eigenvalue is computed by taking the trace of the / ® factor in equation (4).

IrlU E, U |=Tr|E, U= Tr[E ]=m,
Similarly, the resolvent can be written as a sum of projections:
. P
R(1,4°) =3 ——
(2. 4%=3, pay )
and the reduced resolvent, S,(4), is defined in equation (6) as the complement of the n ®
projection.

s P
S, (4) Eg—'—z - 7 (6)

I=n
Each of these eigen-projections can be recovered from the integration of the resolvent
around a closed curve in the complex plane.

1 a0 Q)
P =—— BXA,A")dA
1 2@;}&( )
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OPERATOR PARTITIONING

Assume that the linear operator A(¢) can be partitioned in the following manner:

Al,l SAAl'z Al,l 0 0 AAl.Z
Ale)= L‘ A4y 47 ] =[ 0 A“] ¥ i[AAz'l 0 ] ®)
=A%+¢eA4
A° € X, (Block Diagonal)
A4 € Xy (Block Off-Diagonal)

The first factor, 4° is an element in the space of block diagonal matrices. The perturbing
matrix, A4, is a member of the complementary block off-diagonal space. In fact, matrix
multiplication of these operators can be interpreted as mappings between these spaces.

It is said that 4 and B are partitioned when 4 is a complement matrix of B (4 and
B do not overlap) and 4 € Xgp; B € Xop, then the following definitions hold:

()4 e X, Vn=12,..

(2)B"e Xgp for neven
’ Xop fornodd
A-B

(3')B-A € Xop

EIGENVALUE PERTURBATIONS

The &* projection of an operator, A(£), can be written as the corresponding
eigenvalue scaling that projection.
A(£) P,(£) = P,(&) A(2) = i (D Pue) | ©
P(&) is determined from integrating the resolvent, R(4, A(®), around the k* eigenvalue
and results in an infinite series in €.

-1 -1 -1 =
P (e)=——dR(A,A(e) dA =— RA,A° di+—¢" R™(A) dA
, (€) 27rj§( (&) Mjg( ydito— r}lzﬁ; (A)
= B o+ LRV (10)

n=1

By taking the trace of equation (9), the k® eigenvalue series is recovered:

A4 (8) =;1—Tr[A(s) P.(8)] 1)

k
e
= A + YA

n=1




where A° represents an eigenvalue of 4°. If 4(¢) is partitioned into the form given in (8),
the previous equation is simplified to an even series.

@)= +AP e+ AV e + .. =2 + 2;,153"’5“ (12)

Proof of this result is given in Appendix A.
DETERMINATION OF INSTABILITY IN LINEARLY PERTURBED SYSTEMS

At this point, the application of this method to the state space control approach
given in [1], [2], and [5] is considered. Given a linear plant governed by the following
vector differential equation:

[ o

= Ax +Bu

- - (13)

y=Cx+Du
x = plant state vector
u = control input vector
y = output observation vector
the objective is to stabilize (13) through the use of M actuator inputs and P sensor
outputs. Matrix operators B and C will have the finite rank of M and P, respectively, with
the linear differential operator, A, possibly of infinite dimension.
Using the ROM (reduced order model) methodology, it is possible to transform

the plant to a modal coordinate system and separate (13) into two state equations.
Assuming the feed-through term, D, is zero:

xy=Ayxy+Byu

Y,y =Cuxy (142
_;.C.R =Apxp+Bru

v, =C,x, (14b)
Y=Yt Y, B

The preliminary control design of the entire plant is based upon the dynamics of (14a).; A
finite number of modes are chosen for A, which is an operator of rank N. Equation
(14b) consists of modes that are not of immediate consideration and are open loop stable.

(Re (A (4p)) <0) The use of state estimation and N state feedback results in the system of
equations in (15).

Xy =AN§N+BNE+KN(_.}’_"2N)

u = Gyxy
Defining the error between estimated and actual states by a vector ey, the differential
equation governing error progression becomes the difference between state equations:
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ey=Xy—Xy
ey =(4y-KyCy)ex+ KyCprxg

If controllability and observability requirements are met for the system, arbitrary decay
rates for the designed subsystem can be achieved by choosing the appropriate estimator
gain, Ky, and feedback gain, Gy, matrices for the desired eigenvalues of A-KC and
A+BG.

Writing equations (14a), (14b), and (16) in matrix form, the probable causes of
instability in the closed loop system can be clearly determined.

(16)

Xy Ay + ByGy ByGy 0 Xy
v |= 0 Ay -KyCy KyCy il en an
Xe] | B,G, B,G, AR# Xr

A

Cross-coupling terms in (17), illustrated in bold, characterize the introduction of
estimator feedback which can destabilize the residual state equation. One option to
remedy this problem is given in [1], in which a residual mode filter (RMF) is developed
to compensate for eigenvalues that are drawn unstable. However, knowledge of those
open loop eigenvalues contained in 4, is needed in order to implement the method.
Previous work by Gooyabadi [3] offers a limited perturbation solution to this problem.

Partitioning equation (17) according to the method given in section (2), the matrix
A, can be considered to be the sum of a stable, linear operator, 4°, and a perturbing
operator, A4.

A4, +B,Gy  BGy, 0 0 0 0
A )=| 0 4,-K,Cy O |+el 0 0 K. 18)
0 0 4| |BGy BGy O
=4"+eMd

Our objective is to find out which eigenvalues of A° are driven unstable by AA through
the computation of the first few non-zero terms of the perturbation series (12). Taking &
=1 would give equation (17), but convergence of the eigenvalue series solely rests upon
the condition that |]A4 R(4, A°)|| < 1. Therefore, it is possible that (12) is divergent for
arbitrary ||A4 R(4, A°)|| # 1 and may have asymptotic convergence. :

An example of implementation of this perturbation scheme is given for a simple
Euler-Bernoulli beam with pinned ends:

mz, (6, ) =282, (60 +E- 12 (x,)=u(t)6(x~0.1-]) (19)
. z(0,H=z( H=0
BC: (0.0=2,.0 =0

1
y@) = [2(x,)8(x=09-1) dx =2z(09-1,1)
0
All of the constants in (19) are normalized with the exception of the damping ratio. (|§] =
5.0 10°) Actuation of the beam occurs at the point x = 0.1. Observations of the beam
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displacement, y (f), are taken at x = 0.9. Using the method of eigenfunction expansions, a
temporal differential equation can be constructed:

z, (1) =~(k7) 2,()-2£ (k7)) 2, (€) + 4, (0.1) u(r) (20)
The spatial eigenfunctions, @,, transform the input, u (#), into the modal system of
equations given in (20). Control is introduced to dampen the first few modes, where k=
1,2, and 3. There exist an infinite number of residual modes (k 2 4), but for
computational purposes only the next 12 are considered. Putting the equations derived
from (13) in the form given in (18), we can calculate an estimate of the residual
eigenvalue perturbation resulting from the control design:

A (e)L=l = A+ AP 21
The results of this O (&) approximation are illustrated below in Figure 1. from
this graph, it can be determined that modes n = 5, 7 are driven unstable. Using these
modes in an RMF control design, exponential stability for the entire system can be
achieved.

Residual Eigenvalues of an Euler-Bemoulli Beam
2500

pe + ev. of A®
2000} % .
* comrected e.v.
1500} o i
L 2 O e.v. of closed-loop system
1000} ‘;
=
500t Ll
g T— %
c S—
5 ol
© S +
E 500} &
¥
-1000¢ %
3
-1500} x
*
-2000¢ %
-2500
-0.05 0 0.05
Real
FIGURE 1.
CONCLUSIONS

A generalized approach to the perturbation method outlined in [3] has been
developed. Given a block diagonal linear operator with a first order perturbation in
partitioned form, it has been shown that there exists a corresponding even perturbation

series. An algorithm is outlined to find the O (&) correction for block diagonal operators

2-7



containing eigenvalue multiplicities. Application of this technique to a simple structural -
model illustrates that this method is a viable approach to ROM control design. This
procedure is shown to be successful in other structural problems with no repeated
eigenvalues using finite element models [3].
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APPENDIX A.

Equation (12) is derived from (11) as follows:
Let A(g) = A° + £ A4, where 4° € Xpp and A4 € Xop.

A (a>=;Tr{A<e)Pk(a)]

- T -AD R+ AR )]

k

=4+ T - ZD B )

k

A2 =—T{4e-ED R

Rewriting part of the previous result:

(A)~ A1) P, ()= = (4(e) - Z41) R ACe)) 2
njy

= L § (4(©)- A1+ A1-21) R(A, () dA
2nj ¢

= —_—1—[4 (4(e)- A1) R(A, A(e)) dA + c{ (A-43) R(4, A(£)) dﬂ:l
27[" 19 9

The first integral in (B2) is analytic since (4(&) — A I)-R(4, 4(¢)) =1. Therefore:

A(g) - A

i Tr{{(l——lﬂ)R(A,A(s))dﬂ.}
2rjm, r,

A series formis desired for (B3). Rewriting the kernel of this equation:

(A=) R(A,A(€) = (A - ) R(A, A°)+Z(ﬂ. - AR () &"

Integrating the first term in the right hand side of the equatlon we find that this is
completely analytic inside I'y.

4(,1—,1‘;) R(A,4%) dA= cj(z—/l"

0 Pk
~fo-id| -

From equation (B4):

A(g) =A% =

2x jm

27rjm,‘

"

0

-~ +S;’(;L)] dA=0

Tr[§ 3 (A —A‘:)R("’(}.)g"dl}

k r, n=l

3 (1) (A= A R(A, 4)[A4 R(2, 4] £" dA

n=1
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Using the cyclic permutation property of the trace operator: ‘
Tr[% a4 R(A,A°)]"] = n. Tr[R(A,A")[AA R(A,A°)H (B6)
Substitution of (B6) into equation (BS5) yields a form that can be integrated by parts:

Tr qg%)—(z-zz) d

Ae)-A = 4
(&) 4 J 7

[Ad R, 2] & d/l]

2z jm,

-1 deED" o o N ST o on gz| BD
= T d =Y —(A-4)|MR(4, 4 dA—- AAR(A, A dA
e <jd); = (- )M R )]s] {25 [aa Rz, 4%)] & }

The first term in (B7) can be evaluated about the circle centered at A%, Making the
substitution: 4= A% + r €', this integral is zero:

2z

%[ij(;,’,i(z—zz)[AAR(z,A")]"g"]d,l=i£—_1)"_rf’;’[M R arer AT er] =0

n

n=1 0
The remaining non-zero term in (B7) gives a series in €. However, the goal is to prove that
the odd terms are zero. By equation (10), it is seen that the remainder of (B7) can be

rewritten:

e 1 = 0y, D™ o] o
A,(&)-A Py T{;{ Z( AAR(A, 4%)) . [AAR(A,A )] £ an]

- L a3 2L ey R, 40 [a R, 4O] d
™ = | 27T Re-D(2) J

© n p(n-1)
:g_T,{M.ze i ]

m, ~ n

For each coefficient, A, in this expansion:

1
A = ——Triad PV
i [ K ] (B8)
Integrating P ®-1) yields an expansion in terms of the reduced resolvent, S (A«), and the ~
projection, P 0

1

Al = Tr > A4S (4,) A4 SU(A,) ... AASI(Ay) (B9)

k h L+ +l,=n-1
1,20

where S@=P%and S?=5"fori>1.
Writing (B9) in terms of an ordered multiplication:
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P ﬁ[AAS,f"’(Ak)] (B10)
m; L+ 4l =n-1 r=] .

1,20
Since A4 € Xop and S ¥ € Xgp for all j > 0 by definition (1) of section (2), then A4
S 9 e Xop by definition (3). Therefore, equation (B10) is the sum of a multiplication of n
block off-diagonal matrices that are contained in either Xop or Xgp, depending on whether
n is odd or even. The trace of a block off diagonal matrix is zero, therefore the only non-
zero coefficients in (11) are even. Q.E.D.
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APPENDIX B.

Assume all of the eigenvalues of the full-rank block diagonal matrix, A% e REXY
and the corresponding right and left eigenvector matrices, U and U " can be found. An
algorithm for computing the first two non-zero terms in the eigenvalue perturbation series is
given below.

v

1.) Diagonalize A°, where the eigenvalues in A¥ are ordered Re( -ii’il) > Re( Zi’iz) 2.
Re( A"L):

e A 0 _ U™ 0 ' XU 0 '(Ul,l)'l 0
0 A2,2 0 U2,2 0 ‘A’2,2 0 (U 2,2 )—1

2.) Form the eigen-projections P bi from P’ for each distinct eigenvalue:

N1 -1l
> AL P, 0
4= Y222 .
0 Zlk’ P,
k=1
N(1) = # of eigenvalues in A
N@2)=#ofev.in A*

Fori=1to2,
k=1
L =N()
pP’'= 0 LxL
P’ =Coly(U ") ® Row (U ™)) **
m(k, iy=1
Forj=2toL, N
Premp = Coly(U'™) ® Rowy(U ™))
If AW, = 2%,
P’=P’'+P temp
mik, i) =m(k i)+ 1
Else, -
PHe=P'
/1 l,lk = l,lj-l
k=k+1
m(k, i)=1
P’=P temp
End If
End
P=P’
2. l,lk = /1 l,lL
S() =k
End

** @ denotes an outer-product.
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3.) Compute reduced resolvents, correcting coefficients, A(z)k, and eigenvalue estimates:

For k=1 to S(1),
., S p?
S = Z—_——l}(" ’_ )&,2

J=1

1
/ll.l (2) = Tr AAI,Z SZ.ZAAZ.IPI,I

A=A+ (1)
End
For k=1 to S(2),

sqy pH
Sl,l = J
k Z ﬂi,z —ﬂ,lj]

=l

(112('2 )(2) _ m(llc’z) Tr [AAZ,I S;,lAAl.szz,zl

A= 27+ (/1,2,'2 )(2)52
End If
End
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Abstract

Composite materials are advantageous for aerospace applications due to their light weight and high
stiffness/weight ratio. However, composite parts which are autoclave cured experience problems associated
with cure residual stresses, including a reduction in load carrying capacity and ‘spring-in’, a permanent
deformation due to the residual stresses (Stover, 1993). This paper develops an experimental procedure that can
be used to obtain the residual stress profile in a thin composite part. This procedure involves progressive cutting
of the composite part (i.e. stress relief) and associated strain gage monitoring. The strain gage data is then
combined with a finite element analysis to determine the through-thickness residual stress profile in the
composite part. This analysis procedure can be used as a tool in the understanding and prediction of spring-in,

or simply for measuring the residual stresses in a composite part.




DETERMINATION OF THE RESIDUAL STRESS
PROFILE IN A THIN COMPOSITE PART

Jeff M Ganley

Introduction

Composite materials are advantageous for aerospace applications due to their light weight and high
stiffness/weight ratio. Many other factors give composites superior performance over traditional materials,
including the fact that composite materials can be tailored to meet specific design and loading requirements.
However, a significant problem in the composites industry is that autoclave cured composite parts experience
problems associated with curing residual stresses, including a reduction in load carrying capacity and spring-in.
This paper will present an experimental methodology for determining the residual stress profile in a thin
composite part. This methodology was originally developed as a tool to aid in understanding spring-in in thin
composite parts. However, the methodology can easily be extended to either thick composite parts or isotropic
material applications. In fact, the methodology is applicable, with certain limitations, to any solid where the

residual stress profile is desired.

Determination of Residual Stress Profile

The purpose of the methodology developed in this paper is to be able to precisely determine the stress
(or strain, given a linear elastic assumption) profile through the thickness of a thin composite part. For most
composite materials, including the IM7/977-2 carbon fiber/epoxy material used in the current research, the
material response is linear elastic to initial failure. Thus, the linear elastic assumption is typically a good o;\e for
stresses below initial failure thresholds. The residual stress profile determination will be accomplished through a
methodology that involves a step-by-step cutting of the composite part through the thickness, combined with
finite element modeling using IDEAS Master Series 4.0 finite element software (SDRC, 1990). A brief

overview of the procedure for finding the residual stress profile through the composite part thickness is given by

the following:
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1. Mount strain gages to the composite part on the inside and outside faces.

2. Cut the part through the thickness near the strain gage in ten equal steps, stopping after each cut to read
the strain gage output. The strain change measured by the gage at each step is due to the relieving of
residual stresses at the cut.

3. Model the part in IDEAS, creating finite element models for each of the ten cuts. Place a unit load at
each modeled cut and record the associated strains from IDEAS at the real strain gage location.

4. Correlate the IDEAS strains with the actual strain gage strains to obtain the residual stresses in the part at

each cut.

20 Layer Part Residual Stress Profile Experiment

The procedure given above was completed for a 20 layer thick, 17.8 N winding tension IM7/977-2
unidirectional hoop composite part. The part had the following dimensions: thickness (radially) = 0.3175 c¢m,
width = 4.064 cm, and original inner radius = 6.585 cm. In preparation for the test, the part was cut
longitudinally and allowed to spring-in, then the overlap due to the spring-in was cut out. The part was then
mounted with 8 strain gages, mounted 2.54 cm apart center to center, on alternating faces of the part (4 on the
inside face and 4 on the outside face). The part was then mounted in a Bridgeport C&C machine and secured
(i.e. fixed condition) at 2.54 cm below the first strain gage. The machine was then programmed to cut the part in
ten equal steps at the centerline of the first strain gage from inside to outside (the first gage was mounted on the
outside face). After each of the ten cuts, the machine was paused for approximately 30 seconds while the output
from the strain gage signal conditioner was recorded. When the cutting process at the first gage was completed,
the part was rotated to align the cutting blade with the centerline of the second gage and re-clamped, and the
cutting process repeated. For each strain gage, the cutting was from the opposite face of the part, toward the
gage, at the centerline of the gage. In addition, for each cutting process there was 2.54 ¢m of free composite part
above the cut, and 2.54 cm from the cut location to the fixed condition. This process was repeated for all eight
strain gages.

The reason for cutting at the centerline of the strain gage, which will cut through and destroy the gage
on the final cut, is that this will give more robust results than mounting the strain gage offset to the cut. As can

be seen in Figure 1 on the following page, the FEM strain values due to the cutting and relieving of residual
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stresses in the part are fairly constant over a range approximately equal to the thickness of the part (-5 to § in

Figure 1). However, the strains quickly drop off as you move away from the center of the cut.

—a— Mat x-strain (Outside)

5.0E-09
4.0E-09
3.0E-09
2.0E-09
1.0E-09
0.0E+00

Strain

3 o * T 0 0 * 0 * 3 *

© o < N - o v N~ O

—
' -~

Node

Ca 0 M~ O
L .

Figure 1 — Strains on the Outer Face of the 20 Layer Part Due to the First Cut
as a Function of Distance from the Cut

If the strain gage is placed offset to the cut and the strain gage is not precisely located relative to the
cut, the actual gage location and the FEM modeled gage location will not be the same, and thus the two will
measure differing strains (refer to Figure 1 above). This will lead to error in the prediction of the residual
stresses in the part. However, if the strain gage is placed at the centerline of the cut, a slight misplacement of the
gage will not effect the results significantly. This is because the strains near the cut centerline are relatively
constant and because of the symmetry of the strain values about the centerline of the cut (refer to Figure 1).
Thus, a slight misalignment of the strain gage relative to the cut will not significantly change the average strain
over the length of the strain gage.

In addition to the requirements given above, it is important to consider other factors when performing a
residual stress profile test on a thin composite part. First, one must be sure to use a sealed strain gage. If not, the
carbon dust that results from the cutting will settle on the face of the strain gage and short the gage, yielding
inaccurate strain readings. Second, because of the thin nature of the part and the placement of the strain gage

close to the cut, the strain gage and part will experience heating due to the cutting operation. This must be
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accounted for during the testing. This was accomplished in this research by selecting a thin diamond cutting
blade (i.e. less heat production), and allowing the part and gage to return to room temperature prior to recording
the strain gage output.

The results of the 20 layer part residual stress profile test are given in Table 1 below. The values in the
first part of the table are from the strain gage signal conditioner and are given in Volts. The second part of Table
1 gives the average values from the eight strain gages in the first part of the table (in Volts, V), then converts

the average to microstrains (pe) using the following equation:

pe =V, * 382.7751196 (Equation 1)

Table 1 — Residual Stress Profile Strain Gage Results (20 Layer Part)

Cut _‘Ist.gage /| 2nd gage / :_Brd_ gage /|4th gage / _5th.gage /16th gage / 7th_gage /|8th gage /
inside-out | outside-in |inside-out | outside-in | inside-out | outside-in | inside-out | outside-in
No Cut 0.002 0.004 0.002 0.000 0.002 0.000 0.003 0.000
0.03175cm | -0.403 -0.237 -0.393 -0.217 -0.436 -0.208 -0.504 -0.293
0.06350cm | -0.942 -0.600 -0.952 -0.614 -0.942 -0.578 -1.060 -0.713
0.09525cm | -1.416 -1.066 -1.432 -1.093 -1.335 -1.058 -1.520 -1.235
0.12700cm | -1.660 -1.620 -1.682 -1.669 -1.521 -1.626 -1.756 -1.835
0.15875cm | -1.746 -2.207 -1.771 -2.270 -1.577 -2.232 -1.816 -2.444
0.18050cm | -1.727 -2.743 -1.750 -2.825 -1.546 -2.813 -1.770 -2.970
0.22225cm | -1.680 -3.067 -1.716 -3.160 -1.520 -3.200 -1.690 -3.280
0.25400cm | -1.667 -3.150 -1.730 -3.270 -1.558 -3.340 -1.616 -3.420
0.28575cm | -1.916 -3.120 -1.947 -3.420 -2.055 -3.300 -1.819 -3.630
0.31750 cm 2.025 1.080 -0.098 1.411 12.520 -3.930 -2.507 1.500

Cut Average of [Average of |Avg. strain Avg. strain
1,35&7 246 &8 1,3,5,7 (ue)  |2,4,6,8 (ue)
No Cut 0.0023 0.0010 0 0
0.03175 cm -0.4340 -0.2388 -166.12 -91.39
0.06350 cm -0.9740 -0.6263 -372.82 -239.71
0.09525 cm -1.4258 -1.1130 -545.74 -426.03
0.12700 cm -1.6548 -1.6875 -633.40 -645.93
0.15875 cm -1.7275 -2.2883 -661.24 -875.89
0.19050 cm -1.6983 -2.8378 -650.05 -1086.22
0.22225 cm -1.6515 -3.1768 -632.15 -1215.98
0.25400 cm -1.6428 -3.2950 -628.80 -1261.24
0.28575 cm -1.9343 -3.3675 -740.38 -1289.00
0.31750 cm - - - -
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The values for the average strain given in Table 1 on the previous page will be correlated with the
IDEAS FEM analysis in the following section to obtain the residual stress profile in the 20 layer part, the results

of which are given in Table 4.

Finite Element Modeling

The results of the cutting and strain gage monitoring summarized in the previous section will now be
combined with a finite element modeling (FEM) analysis to obtain the residual stress profile in the 20 layer
composite part. The finite element analysis was completed using IDEAS Master Series 4.0 (SDRC, 1990), a
commercially available finite element modeling package, running on a Hewelett Packard Apollo Series 700
workstation. The purpose of this analysis is to be able to use the strain gage output from the step-by-step cutting
process already completed to obtain a residual stress value at each of the ten cuts. This is accomplished by
building a finite element model that is identical to the 20 layer composite part, including accurate dimensions
and material properties. Then, unit loads are applied in the finite element model at the cut locations, and the
resulting strains at the real strain gage location are recorded (refer to Figure 4). The strain values from IDEAS at
the real strain gage location, due to the FEM unit loads, can then be correlated with the known strain gage output
to find the residual stresses in the real part. The first two steps of this modeling and analysis procedure are given

later to help illustrate the process.

IDEAS 20 Laver Part Model

The finite element model created in IDEAS is meant to replicate the actual part as closely as possible.
This model will be used in subsequent sections to obtain the residual stress profile in the real part. The IDEAS

finite element model for the 20 layer composite part is as follows:

e  Analysis Units= cm /N

o  Four Noded Quadrilateral Shell Finite Elements (Plane Stress)

e IM7/977-2 Orthotropic Material Properties (given in the following section)
e  Part Inner Radius = 6.585 cm

e  Part Thickness =0.3175 cm



e Part Length =5.08 cm
o Finite Element Nominal Size = 0.03175 cm x 0.03175 cm square
e 10 finite elements through the part thickness

¢ Element material x-direction is oriented along the arc (circumferential)

The use of plane stress elements instead of plane strain elements will lead to an error in the FEM results
of less than 1% due to the orthotropic nature of the IM7/977-2 material (i.e. 1/(1-v,,v,) = 1.00532 = 1.0)
(Boresi, 1993). This small of an error is not significant for this analysis. In addition, the error will be consistent
throughout the FEM analysis. Thus, because of the ratio method used in the FEM analysis (Equation 2), this

will not lead to an error in the FEM/ step-by-step cutting methodology results.

Finite Element Analysis IM7/977-2 Material Properties

The relevant IM7/977-2 orthotropic material properties used in the IDEAS finite element analysis are
given below (ICI Fiberite, 1995). The x-direction allowable stresses are given to illustrate that the residual
stresses in the part (Table 4) are well below the failure values. As such, the linear elastic assumption is valid for
this analysis. The material coordinate axes (x, y, z) are set up in the FEM so that the x-direction is along the
fiber (the circumferential or hoop direction), the y-direction is perpendicular to the fiber (the axial direction),

and the z-direction is also perpendicular to the fiber (the radial direction).

e Modulus in fiber direction, E, = 1.72369x10° MPa

e Modulus perpendicular to fiber, E, = E, = 1.01353x10* MPa
+ Poisson’s ratio, v,, = 0.30

e  Poisson’s ratio, v,, = v,, = 1.764x107

e  Shear modulus, G,, = G,, = G,, = 6.27423x10° MPa

e Allowable stress in tension, x-direction = 2.81996x10° MPa

e Allowable stress in compression, x-direction = 1.61337x10* MPa

A picture showing the finite element model of the whole part is given in Figure 2 on the following
page. The arrows at the bottom represent the fixed condition of the part along the bottom. The grid is the finite
element mesh of the part. The line at the center of the part is used to mark the location of the centerline of the
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cut. This line (i.e. the cut) is approximately 2.54 cm from both the fixed and free end as in the actual 20 layer

test part.

Figure 2 — IDEAS 20 Layer Part Finite Element Model

An enlarged view of Figure 2 is given in Figure 3 on the following page. This shows the finite element

mesh near the cut in better detail. In addition, in Figure 3 the first row of elements is removed and unit }oads

(arrows) are applied to model the first cut.
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Figure 3 — IDEAS 20 Layer Part Finite Element Model /
Close Up of Cut Region with First Cut Modeled

In Figure 3 above, one column by two rows of elements (i.e. two elements) are removed on the inner
face of the model to reflect the first cut of the step-by-step cutting procedure. The removal of one element
horizontally reflects material removed in the first cut (element width = 0.03175 cm = 1/10th of the part

thickness). In addition, unit loads are applied to the cut faces to model! the residual stresses in the real part.

20 Layer Part IDEAS FEM Analysis

The step by step procedure used to correlate the strain readings from the cutting procedure and the
finite element analysis is given below. This procedure is best explained by example. Therefore, the first two
steps of the actual analysis for the 20 layer part are given below, followed by the general procedure and
equations that govern the rest of the analysis.

After accurately modeling the 20 layer part in IDEAS, the first step is to model the first cut by
removing elements from the mesh and applying unit loads to the faces of the cut. This is shown in Figure 3
above. This model is then run through the IDEAS post processing software to obtain the strains in the material-

X (circumferential) direction. The results of this analysis are shown in Figure 4 on the following page.
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Figure 4 — IDEAS Model of 20 Layer Part / First Cut with Unit Loading

The FEM strain values due to the unit load applied at the cut are given at the location of the real strain
gage on the outside of the part (i.e. opposite the cut) in Figure 4 above. In addition to this, the real strain gage
output obtained from the C&C cutting experiment is given in Table 1. We can use these two strain values (FEM
and real) to obtain the actual forces (residual stresses) that were relieved in the real part due to the first cut.
Because of the similarity of the FEM and the real part, the unit loads and the residual stresses are related in the

same proportion as the FEM strain and the real strain gage strain. This leads to the following equation:
X, = &5/ &' (Equation 2)
Where:
X, = residual stress in the part at the 1st cut (the desired quantity)

gsc' = total strain from the real strain gage recorded after the 1st cut

g,'' = IDEAS strain due to the Ist load (unit load) applied at the 1st cut
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The value for g;' = -166.12x10° is given in Table 1. The value for "' = -4.520x107 is obtained by
taking a simple mathematical average of the strain values in Figure 4. The fact that both of these values are
negative indicates that they are compressive strains. Positive values would indicate tensile strains. The IDEAS

strain values from Figure 4 are summarized in Table 2 below to illustrate how we obtain g;'.

Table 2 — IDEAS FEM Analysis Data / Cut 1 (20 Layer Part)

First Cut Load 1
20Ictio.mf1
Nodes Right Mat'l-x Strain
0 -5.20E-09
-5.10E-09
-4.85E-09
-4.47E-09
-4.00E-09
-3.50E-09
= -4.520E-09

glojs|w|n|a

Av

= Real Gage

-1.661E-04 Avg. Strain

X1 253.4044 MPa

The x, = 253.4044 MPa value given in Table 2 above was computed by plugging the appropriate values
into Equation 2. The x, value represents the uniform residual stress that was relieved in the part on the faces of
the first cut, due to the first cut. Because the unit load in IDEAS is acting toward the cut faces (refer to Figure
4), which represents the relieved residual stress, the original residual stress in the part (x,) is tensile. Thus, a
positive x; value indicates a tensile residual stress in the part, and conversely, a negative x; value indicates a
compressive residual stress.

We now have the average residual stress in the part for the first 1/10™ of the part thickness (x,). It is
important to note that this analysis procedure gives the average (i.e. uniform) stress value over the cut interval.
We assume this constant value when we apply a constant unit load to the cuts in the FEM model. The actual

profile is probably not constant. However, the true profile should be able to be modeled accurately if the cuts

3-12



are small enough. This is similar to a piecewise linear approximation; the accuracy is improved as the interval is
decreased.

The next step in the analysis is to obtain the residual stress value (x,) for the second cut. To accomplish
this, the second column of elements is removed in the FEM to model the second cut. Next, two sets of loading
conditions are applied separately to the FEM. The first loading condition involves applying unit loads to the
face of the elements of cut 1. These unit loads reflect the x, forces (relieved residual stresses) that are acting on

the part. This is shown in Figure 5 below.
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DISPLACEMENT ~ MAG MINRS s 7.23E VALUE OPTION:ACTUAL
FRAME OF REF: MATERIALYR B SHELL SURFACE: TOP
: 8.B1E-09
7 6.58E~08

\
- -9.8BE~09
5.45E-08|
v ~1.09E-08
. ) 4.32E-08)
- .
| n | -1,16E-08

3.18£-08}
-1,22E-08 :

v
# :
J 1. 24E-08 2.05E-08f)
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-3.61E-08
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Figure 5 — IDEAS Model of 20 Layer Part / Second Cut with First Load

In addition, the model is loaded with unit loads on the second cut face. These loads represent the
additional residual stress (x,) that is relieved during the second cut. The results of this analysis are given in

Figure 6 on the following page.
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Figure 6 - IDEAS Model of 20 Layer Part / Second Cut with Second Load

The IDEAS FEM analysis was broken up into two steps for the second cut. This is due to the fact that,
after second cutting, the loads acting on the part will be due to the residual stresses obtained in step 1 (i.e. x,),
plus loads due to the additional residual stresses relieved in cut 2. The total contribution of these residual

stresses (or loads) to the strain gage location strains must be accounted for separately in the IDEAS analysis.

The equation that results for the second cut is as follows:

X, = (Es6” - &7'%)) / &2 (Equation 3)

Where:

X, = residual stress in the part at the 2nd cut (the desired quantity)

X, = residual stress in the part at the 1st cut (from step 1)

g55° = total strain from the real strain gage recorded after the 2nd cut
&' = IDEAS strain due to the 1st unit load applied after the 2nd cut
g,* = IDEAS strain due to the 2nd unit load applied after the 2nd cut
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The value for g = -372.82x107 is given in Table 1. The values for &' = -1.094x10® and g = -
5.473x10” are obtained in the same manner as in step 1 by taking a simple mathematical average of the strain
values in Figure 5 and Figure 6 respectively. The IDEAS strain values and result for x, are summarized in Table

3 below.

Table 3 — IDEAS FEM Analysis Data / Cut 2 (20 Layer Part)

Second Cut Load 1 Load 2
20Ictio.mf1 20Ictio.mf1
Nodes Right | Matl-x Strain Mat'l-x Strain
0 -1.24E-08 -6.15E-09
1 -1.22E-08 -6.06E-09
2 -1.16E-08 -5.80E-09
3 -1.08E-08 -5.43E-09
4 -9.87E-09 -4.96E-09
5 -8.79E-09 -4 44E-09
Avg. = -1.094E-08 -5.473E-09
-3.728E-04 |= Real Gage Average Strain
x2 =| -37.0092 MPa

The above analysis illustrates the first two steps of the methodology that was developed to find the

residual stresses in the 20 layer test part. The following is the general equation that can be used in the analysis

procedure:
X, = (Esg - &%, - §%p - €%y = .. . - &/ Vx ) / (Equation 4)
¥
Where:

x; = residual stress in the part at the i'th cut (the desired quantity)
gs; = total strain from the real strain gage recorded after the i'th cut

g, = IDEAS strain due to the j'th unit load applied after the i'th cut

In Equation 4 above, the load (j) is always numbered starting from 1 at the cut face of the part to (i) at
cut number (i). The analysis proceeds step by step through the piece, using the previous (x;) values to obtain the

next. For this reason, the experimental error will accumulate as one proceeds through the part. This points out a

3-15



balance that must be used in the analysis procedure. More cuts (i.e. steps in the analysis procedure) will lead to
a greater accumulated error. However, fewer cuts will take away from the desired resolution in the residual
stress profile. These two conflicting influences were taken into account and an analysis procedure was
developed to minimize the accumulated experimental error in the results while maximizing the resolution of the
residual stress profile. This procedure is given by the following: The methodology of Equation 4 is used to
determine the residual stress values (x;’s) in the 20 layer test part for the first five cuts from the outside-in. This
process is then repeated for the first five cuts from the inside-out. When combined, this will give the complete
residual stress profile through the thickness of the 20 layer part while minimizing the error in the results and
maximizing the resolution of the residual stress profile.

This combined methodology was also used, instead of analyzing the part through the full thickness
from inside to outside, because of the reduction in finite element modeling required. For each cut (n) added to
the process, (n) additional FEM loading conditions must be analyzed. The results of the IDEAS residual stress

profile analysis for the 20 layer part are presented in the following section.

IDEAS FEM Results (20 Layer Part)

The results of the IDEAS finite element modeling procedure for the 20 layer part are given in Table 4
below. The table reflects the residual stresses (x;) at each cut labeled as 1 to 10 from the inside to the outside of
the part. As was mentioned previously, a positive x; value indicates a tensile residual stress in the part, and

conversely, a negative x; value indicates a compressive residual stress.
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Table 4 — Residual Stress Profile From IDEAS Analysis (20 Layer Part)

INSIDE
1 253.4044 MPa
2 -37.0092 MPa
3 -61.6092 MPa
4 -148.8423 MPa
5 -89.5525 MPa
6 -80.1752 MPa
7 -40.4260 MPa
8 10.2471 MPa
9 20.8638 MPa
10 136.9772 MPa
OUTSIDE

IDEAS FEM Results Validation (20 Layer Part)

The values for the residual stresses in Table 4 above need to be checked to ensure their accuracy. To
do this, we note that the residual stress profile of our 20 layer part should have no net force (£F=0) or net
moment (EM=0) through the part thickness. This is due to the fact that the composite part has been cut and has
sprung-in; and as such it cannot sustain a net moment or force. Thus, we can check the accuracy of the residual
stress profile results in Table 4 by determining the sum of forces (£F) and sum of moments (ZM) of the stress

profile. If these sums are close to zero, we can assume that the profile of Table 4 is accurate. The results of this

analysis, along with the relative error from zero, are given in Table 5 below.

Table 5 — Residual Stress Profile ZF and M (20 Layer Part)

Residual Arm from Moment =
Stress (MPa) _Center- StressxArm
line (cm) (KN/m)
INSIDE 253.4044 0.142875 362.0515
-37.0092 0.111125 -41.1265
-61.6092 0.079375 -48.9023
-148.8423 0.047625 -70.8861
-89.5525 0.015875 -14.2165
-80.1752 -0.015875 12.7278
-40.4260 -0.047625 19.2529
10.2471 -0.079375 -8.1336
20.8638 -0.111125 -23.1849
OUTSIDE 136.9772 -0.142875 -195.7062
ZF = -36.1219|MPa M= -8.1239/KN/m
SF/ ZIF| = -4.11(% IM/ZM| = -1.02|%
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As can be seen in the last row of Table 5, the error in the IF and XM calculations is relatively small. In
addition, the more critical measure for our analysis, the M error, is only 1%. This suggests that the step by step

cutting/FEM analysis for the 20 layer part has yielded accurate results for the residual stress profile (Table 4).

Conclusion

This paper has outlined a step by step cutting / finite element analysis procedure that can be used to
determine the residual stress profile in a thin composite part. This procedure was originally developed to assist
in determining the spring-in in thin composite parts. However, this procedure can easily be expanded to include

thick composite parts or isotropic materials.
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Abstract

The low densities and short timescales involved with dust grain formation in nova outflows imply that the
grain size distribution of dust which forms does not conform with thermodynamic equilibrium, and grain growth
in these environments should be modeled in terms of kinetic equations (Johnson et. al. 1993). One recent use
of kinetic equations to model dust growth in stellar outflows is presented in Egan and Leung (1995.) We
present corrections to the equations for kinetic growth presented in Egan and Leung (1995), and compare the
method of contracting a large set of kinetic equations by taking moments of the kinetic equation to a method of
binning equations.

To determine the effect of novae on the infrared background, and particularly data from the MSX mission,
we first calculate the expected rate of nova observations present in the MSX catalog. We find that the expected
number of classical novae for any given map in band A (8.28 um) is of the order of 10, and on the order of 1 in
all other bands. We compare 1 known observation in the visual which brightened shortly before MSX
measurements of it’s location. We report a band A measurement of .322 Jy for Nova V4361 Sgr (Sgr 1996),

and discuss the implications of this measurement relative to visual measurements published on this nova.




Introduction

Long ago when curious minds looked at the sky and saw a light appear where before there had been only
emptiness, they thought they were witnessing the birth of a new star. They even gave it the name “nova stella”,
or "new star” (Bode and Evans, 1987). The phenomenon of the nova is now known to be part of a broad class
of stars known as cataclysmic variables, in which large changes in brightness occur in very brief time periods.
In the classical nova, matter accretes from a binary companion onto the surface of a white dwarf star. The
heating of this material by the white dwarf erupts in a thermonuclear runaway, launching a shell of hydrogen,
carbon, and other elements at ~ 1000km s~!, and the star is observed to brighten by many magnitudes in the
infrared, visible, and ultraviolet (2 9 magnitudes in the visible spectrum.) Peak luminosities in the visible can
range from 10% - 10°Le for classical novae, with anywhere from a few thousandths to all of the total
luminosity reradiated in the infrared (Starrfield 1988).

Over the course of the nova’s evolution, great changes can be seen in the infrared, visible, ultraviolet, and
x-ray regions of the spectrum. The only major difference between visible light curves is the possible occurrence
of a deep dip in the visible light curve during the decline period, associated with an increase in the infrared.
Both changes are on the order of a few magnitudes. The current accepted explanation for this dip is that it is
caused by the formation of dust in the nova outflow.

The nova event generally lasts for ~ 100 days, and the infrared excess associated with dust formation
generally takes place over a few days or weeks. Approximately 100 novae occur in the galaxy every year, of
which about 20% have an apparent visible magnitude above 6.0. While the infrared signature during the initial
expansion is due only to the expanding shell of gas, the infrared signature of the dust formation event is
dominated by the absorption and radiation of carbonaceous or silicate material in the dust shell. In order to
understand the spectral signature of the dust formation period in classical novae, the growth of these grains
must then be modeled, and the radiative transfer of light through this dusty shell determined from the dust
characteristics.

Solving the kinetic equations which describe the growth of dust grains has primarily one obstacle. A 1 um
sized grain requires 10'? equations. Researchers generally reduce this set of equations by one of two methdds,
taking moments of the equations, or grouping equations into bins.

As part of this study I have also estimated the number of novae present in the MSX satellite data is
estimated. Visual observations of the slow nova V4361 Sgr are interpreted with respect to an infrared
observation (8.28 um)from the MSX point source catalog. The density of the shell on July 19, 1996, is

calculated to be ~ 10%cm™3.

Modeling Grain formation
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Modeling the kinetics involved in grain formation require the solution of a large set of nonlinear ordinaryj ‘
differential equations. The general approach is to in some way contract the large numbers of equations required
to a number which is within one’s computational means, and integrate using a method suitable for stiff sets of
equations, such as the backwards Euler method (Press et. al. 1992) or the Gear method (Kahaner et. al. 1989).
Improvement of computer code from Egan and Leung. '

Egan and Leung (1995) cite the following equations for the kinetic growth of grains, determined via a

method of taking moments of the kinetic equations, coupled to a truncated set of equations up to some cutoff:

%’;L = Z}Zlﬁ[—-}’i,,}jﬂ - Piiifi + P,'+j,iﬁ+j + P,'_j,if,'._j] i>M

df; N .

L= TP+ Pigif] isM
+Z:=11fm [Piomifi-m = Piimfi + Pismifism — Pijemfi]

_dKs g
dr !

K; = Z;:Nc ji/3fj

where P;;; is the reaction rate for the kinetic equation Cj+ C; — Cpy, f; is the density of the C; gas
component, and only growth by accretion of clusters up to size M is considered. [ is a factor which takes into
account the difference in the rate for the collision between two clusters of the same size, and as it is written in
the equations above is given by I = (1 + &) %I; is the interaction of grains above the cutoff grain size N,

with the ith grain size. In the formalism presented by Egan and Leung for determining %, each i term is

linearly independent, and the determination of %li from -‘Ld'i—’ is trivial.

This expression for the accretable species neglects reactions of the type C;+ Cm = Cim, and also has
double counting for reactions with grains larger than N.. If the total shell mass is given by M = VZ‘::l mfi,
and assuming that the volume V is constant, and the mass of the ith grain size is m; = im., then conservation of

mass requires that

Ne-1 @ Ne-1 .
ifi = ;,";[leif,-+2if,-] =Y ifi +Kk3 =0

i= =N, i=1

Ms

d
dt,_

Taking these factors into consideration, the improved set of kinetic equations is given by

4 = Z;Z]ﬁ["Pi,Hjﬂ = Piiifi + Pisjifisy + Pijifii] i>M

dt




i Ne-1 .
L = 3 SiPiifii + Pijif] isM
+Z:=1]fm [Pizmifi-m = Pijmfi + Pismifism = Pijsmfi]

+ 350 fulPismifiom — Pijamfi]
+L TN G DfPjidfiei + Pjguif)

— Ky
dr !

Ki - Z;:Nrj”}ﬁ

These alterations were made in Egan’s time dependant grain growth code, and are currently being tested.
Comparison of bin and moment methed

As was described in the previous section, the kinetic growth of dust grains by accretion of small clusters
has been done primarily by two methods. This was originally attempted by Yamamoto and Nishida (1977), but
they did not use any method to contract their system of equations, and their grain size was limited to the number
of equations they could solve practically, which with the computing resources at that time was ~ 100 equations.
Gail and Sedlmayr (1988) introduced a closed set of moments of the kinetic equations. Egan and Leung (1995)
applied this method to the growth of dust grains in the outflows of Asymptotic Giant Branch stars.

A second approach was taken by Johnson, Friedlander, and Katz (1993), in which the equations are
grouped into bins when the grain size becomes large.

For the purposes of this comparison, growth by accretion of monomers only will be considered for
simplicity.

Consider the following model

J2
Ei = (1-056i11)4n(ri-1 + a°)2[ QrmckT gain) " ]
T 2 s ; ;
xexp(i—T‘:ﬁ{lzﬂ — (t - ])713})_NVL
12
Ci = (1-058;)n(ri+ao)? %ﬂi)

where C; is P and E; is P;;-1f1 in our previous notation. -NT" is a normalization factor allowing us to write

the equation in terms of total numbers instead of densities. This gives us the following master equations to be

solved
B = Ni[-CiNi+ CiaiNia] i>1
+[—E,‘Ni +Ei+1Ni+1]
dN 0 .dN,‘ | =
o T Tlata =

Moments can be taken of this set of equations to reduce the number of equations needed to be solved. For
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the above definitions, if i > N, then N; = Ny,
% = Ni[-CiN; + CietNi-1] + [-EiNi + EiNint ] i>1
+[-EiN; + Ei1Nin]

daNy Ne-l: v 1
ar Zj=2lNJ K3

- K
<5 = CN-INN-iNN. — EN.Nc

%‘L = NP[Cw-iNN-1Nn, - En.N.] i>0

) T \ 172
+-§-[47m(2,(——-k ) TN N + dnad—L—0r ]KH

2nme 0 (2amcKTgrin)

Alternatively, if the master equations are expressed in binned form with i grain sizes g;, then the rate of
growth from bin i to bin i + 1 is given by the rate of accretion of (g1 ~ g;) monomers assuming that the rates

are essentially unchanged until growth to the next bin has occurred. The binned equations can be written as

dN; _ __CNi CiiNiy :
dt Nl[ go&r T Ergii ] i>1
___EN; EiiNiv
+[ 8i—8i-1 + 8is1—8i ]
ANy _ _§e , dN; P
dr Zj=2g' dt i=1

The above problem is solved using each method. Since the moment method does not explicitly give us the
grain size distribution, moments are taken of the grain size distribution from the bin method, and these are
compared.

The parameters for the comparison models are given in table 1.

Ngas(r = r+) | 2.893 x 106cm™3
L. 10°Lg
T, 2500K
Tgas = Tgrain | T+(RW/R)V2 ,
Vour 108
Table 1.

Values typical of an AGB star are used for comparison with the work by Egan and Leung. All integrations
were performed using Kahaner and Sutherland’s DDRIV2 subroutine, in Fortran77, on a Dec Alpha with a 225
MHz processor (Kahaner et. al. 1989). The time and memory requirements of each method depend primarily
on the total number of equations required in the solution.

Results for each method agreed qualitatively, and Figure 1 shows grain size as a function of radius from the
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central source.

The major approximation that is made in the derivation of the moment equations is the assumption that for

large i, N; = Nioj. As N, is increased, this approximation should improve, and the integration result should

approach the exact solution.

In the bin method, the approximation is that a discrete set of grain sizes is treated as a set of bins above
some cutoff Np. The grid spacing after that is arbitrary, but we have chosen a logarithmic bin spacing. The
solution should approach the exact solution as the bin widths decrease. There are then two parameters which

can be changed to improve the accuracy of the results: the value of the cutoff at which binning begins, and the

logarithmic spacing factor y.

05
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<N> 10

_J
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2.2
R/Rx«

24

2.6

Figure 1. Grain size as a function of radius for the bin method with N, = 90, 75

logarithmically spaced equations, and a maximum possible grain size of 108.

Figure 2 shows the maximum grain size from each model, plotted against the total number of equations
required in the solution for 4 cases. Case 1 is the moment method. Case 2 is the bin method, with the cutoff
value N}, held constant. Cases 3 and 4 show how the solution changes with Ny, if the logarithmic spacing factor
y is held constant. The total number of equations required in the moment method depends on the number of
extra kinetic equations above N used, and on the number of moments solved for. For these models,
Nioment = Ne¢ + 7. In the bin method, the number of equations beyond N}, is determined by g, and is set so that

the size of grains in the last bin is 108 carbon atoms.
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All methods show an increase in grain size with an increase in the accuracy of the equations. The bin’ ‘
method seems to be leveling off at a smaller number of equations. It is not yet clear exactly if the moment
method will converge to the same solution, and this will require further calculations to determine. If we assume
that all models are approaching the same value, which due to the monotonic increase in each curve must be

greater than the values plotted, then it appears that the bin method is capable of achieving greater accuracy for

the same number of equations used.

1.50E+04 ST
/
.I
1.40E+04 L
-~
4
I/
> ' /
1.30E+04 /
--n,,-"' * - s - Bj thod Nb - 90
1.20E+04 —— Bin method chi 1.8 |
o ssess« Moment method
pvi 2 =+= Bin method chi - 1.04 {—
1.10E+04 l ] l l
0 100 200 300 400 500
Number of equations used

Figure 2. Average grain size plotted against number of equations used
for moment and bin methods. For the bin method, either the logarithmic

spacing for the binned equations or the grain size at which binning begins
is held constant

Novae in Celestial Backgrounds

The continuous novae spectrum can generally be described in three phases. At outburst, an optically th{ck
fireball expands at constant velocity and constant bolometric luminosity, with a decreasing effective
temperature. As the shell becomes optically thin, the continuous spectra consists of an optically thin blackbody
in the visible, free-free excess at optically thin wavelengths, and an optically thick blackbody at long
wavelengths, where the optical depth is dominated by free-free absorption. The effective temperature of the
nova rises, while the bolometric luminosity remains constant, and the visible flux decreases. For many novae,
particularly those with higher mass loss and lower luminosity, a dust formation event takes place which
produces an optically thick shell in the visible, radiating as a ~1500K blackbody in the infrared.

Parameters for a typical nova that will be used in determining the rate of occurrence of novae in the MSX
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data are listed in table 2.

For the temperature of the novae, T is determined by the radius-luminosity-temperature relation when the
shell is optically thick, and is picked so that the decline of the visible luminosity matches a decline speed of

t2 ~ 50 days in the optically thin phase.

Outflow velocity Vour 15.0x107cms™!
Sound speed Veound | 1.5 x 108cm 57!
Shell radius R Vourt

Shell thickness ) Vsoundt
Luminosity L 105Lg

1 <1 To(L/Lo)"™(RIRe)™ 2
t > 1 determined by 1, ~ 50 days

Effective Temperature | T

Grain Temperature [T, | T(R./R)'?

Mass Loss : M 105Mq
Carbon Mass Mc |5%x102M
Grain size a 0.3um
Table 2.
The flux is modeled as

Fi=(-e")By*xA+eff xVxe™
where 7 is the optical depth at the given wavelength, A is the area of the shell, V is the volume of the shell, and

efF is the free-free emissivity (Rybicki and Lightman 1979),

FF _ dv Fr _ ¢ (27 ( 2m yinpeing, o -nvikT
¥) P Az( e (3km) T-Y“Z%n.n;ie )

Approximately half of all novae form dust shells, so for the purposes of these calculations a typical
classical novae has a 50% chance of forming an optically thick dust shell at T, = 1500K. It is also assumed
that the hydrogen is completely ionized.

Figures 3 and 4 show the average flux in each band for MSX bands A, B1, B2, C, D, and E. The values
plotted are D?F,, where D is the distance to the source in centimeters, and F is the flux in Janskys. Figuria 3
applies to a nova with an optically thick dust shell forms, and figure 4 applies to a nova which does not form
dust.

The average rate of novae in our galaxy is 100y~ (Bode and Evans 1987). If the majority of these novae
occur in the plane, and the solid angle subtended by the plane of the galaxy is approximately 0.2rad by 2z rad,
or ~ 1.25sr, this yields a rate per year per steradian in the galactic plane of 80 y~'sr-!. Assuming these novae
are evenly distributed along a line of sight out to 20 kpc, but the area subtended by a solid angle passing through

a flat cylinder is proportional to R, then the probability function of a novae occurring spatially will be
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p(r) = (5 x 1073kpc~2)R, where integration of p(r) out to 20 kpc has been normalized to 1. The rate of '
occurrence of novae at a given radius looking out along a line of sight is then 73} = 0.4y~!sr'kpc2RdR. The
timescale for these events will be days, which is much longer than the duration of the measurements, so the

number actually seen will be the rate of occurrence multiplied by the duration of the event.
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Figure 3. Band A flux, normalized by the distance to the
source, for a typical dust producing nova.
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Figure 4. Band A flux, normalized by the distance to the
source, for a typical non-dust producing nova.

The duration (Ar) that a novae will be intense enough to be seen by the instrument will change as the novae

occurs farther away from us, so the average number seen per steradian in an observation will be
N = 0.4 [ AR)RAR

The results for each band are given in table 3.

Band |A BlL|B2|C |D |E
N(sr~!)| 13.1|.47|.78 | 1.40{1.39| 46

Table 3.

At best, this should be considered an order of magnitude calculation, however, due to the assumptions
made throughout the calculation. To an order of magnitude, the rate of nova per observation per steradian in

the MSX data should be ~ 10 in band A, and ~ 1 in each of the other bands.
Nova V4361 Sgr

10.4
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10.8 '
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._
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@
12.4
-20 -10 0 10 20
t(days relative to Aug 1, 1996)

Figure 5. Light curve in V band for V4361 Sgr. All values are from IAU
circulars, and authors for each data are listed in table 4.

In the interest of finding novae in the MSX data set, any nova observed at visible wavelengths during the
time of the MSX mission were considered. Two novae occurred during the MSX mission that were observed in

the visible, and occurred in the galactic plane, but only one of these, V4361 Sgr, occurred shortly before MSX
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observed that part of the sky. V4361 was first observed after outburst on July 11, 1996, at b = -2.28, [ = 13.7. '
MSX measured this part of the sky once on July 19th, and later 3 times in early September. There was a point

source detected in band A (8.28 um), and no other bands, in the July 19th measurement, and no detections at all

in the September data.
Table 4 gives data published in IAU circulars 6443, 6447, 6450, 6453, and 6454 by various authors. The

visual light curve is plotted in figure 5.

Source Day (Aug 96) | U B A\ R 1 J |H K

Nakano et. al. -18.327 10.1

Gilmore and Kilmartin | -17.502 11.8911.69 1059 9.79 | 9.04

Monard 5.86 10.8

Morrison and Argyle |5.94 11.61

Ripero Osorio 6.88 11

Morrison and Argyle | 6.94 11.2

Dillon 7.22 10.8

Schmeer 7.9 11.3

Morrison and Argyle |7.94 11.54

Morrison and Argyle | 8.93 11.65

Dillon 9.15 11.2

Sostero et. al. 9.924 12.78 | 11.78 | 10.92 | 10.14

Morrison and Argyle | 9.93 11.96

Martin 9.965 8.9318.73|8.35

Sostero et. al. 10.877 13.03|12.04 | 11.19 | 10.39

Morrison and Argyle |10.93 12.29

Morrison and Argyle [11.92 12.07

Sostero et. al. 12.855 12.99 [ 12.06 | 11.24 | 10.45

Morrison and Argyle | 12.92 12.19

Sostero et. al. 13917 12.9711.97 | 11.17 ] 10.38

Morrison and Argyle | 13.92 12.15

Sostero et. al. 14.973 12.95(11.97111.1810.37

Sostero et. al. 15.868 12.95|11.93|11.08 | 10.29

Sostero et. al. 16.854 12.87(11.81|11.02|10.22
Table 4.

Dust formation phase

A classical novae reaches a maximum in infrared wavelengths at the time the nova shell becomes optically
thin in thermal Bremsstrahlung absorption. A second infrared emission phase can occur in novae which form
dust. V4361 did have a significant dust formation event. There were 3 MSX maps that covered the area of the

sky in which V4361 Sgr occurred after the dust formation event. The optical depth of the dust formation event,
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computed by comparing the minimum of the light curve during the event with an extrapolation of the light curve
from before the dust formation event, gives us an optical depth of 7, = 1.1 for the dust shell at the time of
maximum extinction. However, the dust shell had expanded to the point of being optically thin well before the
MSX measurements, so it is not surprising that no detection was made. While a direct estimate without
knowing the dynamics of the shell is difficult, it is known that the light curves of all nova are similar on a
dimensionless time scale, i.e., the ratio of the time at which an event occurs in the light curve to the outburst
time is similar for all novae. If we consider an outburst time of July 10th, and a dust formation time of August
8th, and scale our typical A band light curve from figure 3 accordingly, we see that the flux around September
10th is 4 orders of magnitude less than the maximum Bremsstrahlung emission.

Bremsstrahlung emission phase ‘

The July measurement did get a glimpse of emission in band A, at 4 = 8.28 um (A4 = 4 um), of .322 Jy,
well above the sensitivity limit of the instrument (0.07 Jy). In units of Fy, this is 1.41 x 105 erg cm=2s~1A™.
Due to the time of this measurement with respect to the novae outburst, and the fact that the value at this
wavelength exceeds the blackbody radiation at the novae temperature, this is most likely thermal
bremsstrahlung emission.

Color color correction

The nearest spectra to this date are the U,B,V,R,I spectra taken by Gilmore and Kilmarten on July 13.498.
Given the very slow speed class (£, ~ 200d) of the novae, and due to the fact that the dust formation does not
occur for another 16 days, the spectra at the time of the MSX measurement should be approximately the same
as the spectra taken 6 days earlier. The general trend in novae is towards a slowly rising temperature, with
constant bolometric luminosity, so any error in doing this would lead to an underestimation of the IR excess due
to free-free emission.

This data must first be corrected for reddening by foreground material. A value of E(V —[12]) for the

galactic plane is taken from Egan and Price (1996).

o . 0.1
E(V-112D =RGb.D = i T0.03G < cos)

Values from Whittet are used for the average interstellar extinction curve (1992). The interstellar extinction

curve follows a power law in the infrared, given by

EA-V) _ -184 _
26V 1.192 3.05

holds at least up to 5 microns. Assuming that the same power law holds beyond 5 microns, then

T —-R(b,D) _
EB-W 1.19[12]71# - 3.05 S29R(b.1)
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The position of V4361 Sgr is b=-2.28, 1=13.7, which leads to

E(B-V) = 3.29R(-2.28,13.7) = 0.466

Band | m; EAL-V)IM; |fs 19:0:}
U 11.89 | .746 11.14 | 1.49e-13 | 1.35e-13
B 11.69 | .466 11.22]2.11e-13 | 1.88e-13
vV 10.59 |0 10.59 | 2.11e-13 | 2.11e-13
R
I
A

9.79 {-0.363 10.15} 1.51e-13 | 1.83e-13
9.04 |-746 9.786 | 1.01e-13 | 1.27e-13
6.91 |-1.41 8.32 |3.83e-16 | 9.54e-17

Table 5.

While exact values require knowing the extinction Av, relative values can be determined by using a value
of Ay = 0. The blackbody spectrum shown is the best fit to the U,B,V, R and ] measurements, using the method
of simulated annealing, which matched a temperature of 5330K. Dereddened values are listed in table 5.
Hydrogen gas density

If all of the radiation in band A is from Bremsstrahlung emission, the gas density at the time of
measurement can be estimated. The main spectral line seen in novae outburst near band A is the NVI line at
7.6 um, but that is generally seen much later in the nova outburst (Gehrz 1988). At the time the measurement is
taken, the ratio of the infrared emission to a blackbody extrapolated from a fit to the U,B,V.R,and I
measurements yields

Err Fj
= - L = 4,01
Epp  Fpp

Using the previous definitions of the nova flux,

Epp _ (1-e™)By+ efFLe
Epp TyisBy

This function is solved numerically for Z = 1, T = 5330, and n, = n; = n, to obtain a relationship between the
shell thickness, L, and the gas density, n. The results are shown in figure 6.
The thickness of the shell needs to be less than 10'2cm for the shell to be in the optically thin regi;ne.

Clearly for any realistic values of L, the band A measurement is taken at an optically thick wavelength, and

E _
2 = i = (eorl)”

For V4361 Sgr, n, = (4.0o7L)™'. While the geometry of this particular novae is not well known, given a

typical shell thickness of L=10'3, a gas density of 4.2 x 107 is calculated. Given uncertainty in the thickness

of the nova shell, this should be considered at best an order of magnitude, and n ~ 10'°cm™.
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Figure 6. Results of numerical solution for shell density as
a function of shell thickness for V4361 Sgr.

Conclusions
Grain growth

In order to conserve mass, alterations are required in the method of Egan and Leung. We have
implemented, but are still in the process of testing the results of these changes, both for the past application of
this method to AGB stars, and to the current application of this method to the study of grain growth in nova
shells.

For the case of monomer accretion, while there is good qualitative agreement between the bin and moment
methods, there can be as much as 50% difference in the results of calculations for parameters typical of AGB
stars. We intend to continue this testing as it applies to novae. Current results seem to imply that the bin
method attains greater accuracy for a smaller number of equations. It should be noted, however, that this testing
was for the case of monomer only accretion. It is not yet clear how well suited the bin method is to the grm;vth
of grains by accretion of larger clusters, and comparison of this to the moment method would help to further
differentiate between these two methods. Also, while the bin method gives explicit information about the grain
size distribution, the moment method requires the use of a reconstruction method to determine the grain size
distribution. Future work should compare a maximum entropy reconstruction as in Vicanek and Ghoniem
(1992) with the explicit distribution from the bin method.

Novae in the MSX data

Classical novae should be expected to appear in the MSX data set, but not in great abundance. However,
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the timing of the experiment was sufficient to obtain useful infrared data for at least one nova, V4361 Sgr.
While the likelihood of using MSX data to account for other classical novae is not high, one might consider the
effect of dwarf novae on the MSX measurements, as their frequency is higher, and their eruptions are recurrent.
Nova V4361 Sgr

We confirm the sighting of a known nova, V4361 Sgr, in the MSX data, and compare the infrared flux with
other visual measurements to calculate a hydrogen shell density of 10°cm~3 at July 19, 1996. Wagner et. al.
report taking spectra of hydrogen Balmer lines, Fe II, and Ca II, but have not yet published an analysis of these

lines to determine the outflow velocity of the source (Nakano et. al. 1996). Knowledge of the outflow velocity

will help to better constrain these calculations.
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Abstract

Blumleins are transmission-line structures that allow the formation and propagation of
electromagnetic waves. They have existed for decades and their use has been widely documented for a
variety of applications. The most common form of the single Blumlein is, perhaps, the three-conductor
coaxial line. The widespread use and the coaxial cable’s simple geometry lend itself well to today’s needs.
The tri-plate Blumlein configuration, on the other hand, is not as well known. Due to its more complex
geometry, certain aspects must be considered which are not at all relevant in the coaxial case. This work
attempts to explore the intricacies of not one triplate Blumlein, but a stack of such devices. A model has
been constructed which not only accounts for wave propagation in the time domain, but also Blumlein
charging and commutation. Each portion of the model has been compared to modified (existing) analyses
of similar structures. The limits of validity for this analysis have also been tested through experimental

studies.
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A COMPUTATIONAL ANALYSIS OF STACKED BLUMLEINS
USED IN PULSED POWER DEVICES

Johnelle L. Korioth

Introduction

Modern applications for electromagnetic waves have a basis with the discoveries of Maxwell,
Faraday, Ampere and Hertz. There has been much success in most all frequency ranges with regard to
fundamental understanding and technological implementation. To some extent, though, there still exists a
gap in the millimeter and sub-millimeter regions.! This zone is of great interest because some of the typical
resonant frequencies of many biological and physical objects lie in this domain and, more simply, because
this is the area of crossover from radio to optical frequencies. It is imperative that this gap be mastered if
applications like enhanced radar systems, atmospheric chemical analysis, industrial materials processing,
and advanced accelerators for high-energy physics research are to be realized. To this end, the primary
thrust of this research is the development of a model for a stacked Blumlein microwave source used in such

a radar system.

Model Development
In 1948, A. D. Blumlein patented a device® capable of both pulse formation and propagation. It

consists of two transmission lines that share a common, charged conductor. When connected to a matched
load impedance, Z;, the measured output is, ideally, a rectangular pulse with an amplitude that is equal to
the full charging voltage, Vo. The width of this pulse is roughly twice the one-way transit time of a
constituent transmission line. The remarkable achievement of this invention is that it overcomes the
obstacle of a regular transmission line for which only one half of the charging voltage, at best, is observable
across a matched load. Because the transmission lines are effectively charged in parallel and later
discharged in series, a stack of Blumleins (Figure 1) can be constructed whose output approaches the
charging voltage multiplied by the number of Blumleins comprising the stack, thereby producing the
additional benefit of voltage multiplication.

The charging and discharging of Blumleins is essentially a time domain problem. While the
propagation of a pulse on a lossy line is best dealt with in the frequency domain, the transmission lines
considered in this work are lossless. This means that frequency dependent dispersion is not a factor as long
as only a single dielectric is present. The computational analysis, therefore, utilizes space-time diagrams,
otherwise known as bounce diagrams, for a purely time-domain treatment of stacked Blumlein pulse
generators. However, the method of moments is first employed to calculate the system parameters, such as

the matrices for the capacitance per unit length and the characteristic impedance.
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Figure 1: A stack of two Blumleins in the (A) shared and (B) separate conductor configurations. In both
instances, the conducting plates are all separated by a distance d. For configuration in (B), however, the
spacing between Blumleins is variable.

In this research, the moment method was applied in two dimensions by employing the following

equation®
w, /12 lnl I
1 dx el
I nx ;
B _/I,w. W AW, 1n|r —F ’

where @, is the known potential at the center of the ith subsection. The first term on the right hand side of
the equation represents the potential of the ith subsectional element due to itself. The second term reﬂec"fs
the influence of all other elements. In this case, w is the width of each subsection. It is constant for all A/
elements of the structure. In other words, w; = w; = w = W/m. The variable 4, is the linear charge density
for each element to be determined in the computation. Although it is evenly distributed over each element,
the charge density is treated as a point charge located at the center of the subsection. The distance between

elements is r; - r;. Thus the final form of equation above is

@, =--27[/1 (ln——l)+z/1 In|7, - \]

j#l
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Figure 2: Cross-sectional view of a stack of N Blumleins. Each conducting plate is divided into m equal
segments, creating a total of M elements for the entire structure.

There are M of these equations to solve simultaneously for the M charge densities. This is easily
accomplished with a computer software package designed to handle matrix operations, such as MATLAB.

The matrix equation used for this research is

[o]=[cT"lg].

where {®] is an M x 1 matrix of the potential on each subsectional element. [CT" is the inverse of the

capacitance-per-unit-length matrix. The inverse capacitance matrix can be generalized as follows

[T = Lf]

where [fg] is the “per-element” matrix of geometric factors.” This matrix is computed instead of rcr!
because it can be used to calculate matrices for quantities such as inductance, impedance and admittance.
In order to proceed with the development of the model, however, the “per-element” matrix of geometric
factors has to be reduced to a matrix with “per-plate” entries, with one of those plates as a reference. This is
required because the electric potential between plates is measured with respect to some point of reference.
Without this reduction, we would therefore be unable to properly keep track of the transient waves (and
their associated voltages) established and propagated by a stack of Blumleins.

The process of reducing the “per-element” matrix of geometric factors to a “per-plate” one is not
accomplished by simply summing all [fg] matrix elements for each plate. When calculating the matrix of
geometric factors per plate, [FG], we must first invert [fg], then perform the summation of [gf/ matrix
entries for each plate. This produces [GF], which is the n x r inverted “per-plate” matrix of geometric
factors having matrix elements

am

GF, = Z ngf,-j

i=m(a-1)+1\_j=m(b-1)+1
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Inverting the [GF] matrix finally yields the “per-plate” matrix of geometric factors. Now, this needs to be
reduced yet further so that the bottom-most plate becomes the point of reference for the system. This is

accomplished with the following equation

Fg, =FG FG,,,-FG,,, +FG, i=l.n-1 j=l.n-1,

i+l 41 T i+1,1
where Fg; are the elements for the reduced “per-plate” geometric factor matrix, [Fg].

Now that these fundamental matrices have been determined, it is straightforward to compute the

capacitance and characteristic impedance of the stacked Blumlein structure. The per-unit-length
characteristic impedance matrix is given by

2= 17l

while the other circuit parameter, the per-unit-length capacitance, is related to [Fg] by
[C]=elFe]™.
These matrices alone do not give all of the information needed to track the propagation of TEM
waves. They do, however, prove necessary in the determination of the scattering matrix for each
termination of the stacked Blumlein. At the switching end, we find

sl-{ 2212

[zr1]+]zc]
where [ZT1] is the termination impedance matrix at the switch end of the Blumlein. At the opposite
termination we find
ISL]= [[ZTZ]— [Zc]) .
[z12)+[2c]
[ZT2] is the termination impedance matrix for the load end of the Blumlein. Consequently, a properly
matched load must be determined that is a scalar value, not a matrix. .
As seen in Figure 1, the load is placed between the outermost plates. Ideally, a load whose
impedance matches that of the Blumlein stack will have an optimized output. As Figure 3(A) indicates, the
load “sees” the series summation of the four adjacent-plate impedances if there is no field coupling between
non-adjacent plates. Complications arise because that field coupling does indeed exist, as evidenced in
Figure 3(B).
The stacked Blumlein model computes and suggests two reasonably “matched” loads. The first is
simply the series summation of each transmission line’s characteristic impedance (Figure 3(A))

n-1
ZL = zc, +Z ZC, 0 -

i=1
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ref

Figure 3: (A) The generally accepted view of the characteristic impedances involved in obtaining a
“matched” load of a stacked Blumlein. (B) The matrix formulation of this problem reveals all of the
“other” characteristic impedances present for this structure, complicating the computation of a true “match.”
(The placement of impedances does not reflect their actual position.)

The second includes coupling contributions. For a stack of two Blumleins that have no spacing between

them (Figure 3(B)), this amounts to

-1

1 1 1

ZL = + +
z¢y, +26'12 +ZC23 -I-ZC34 ZCy, -i-ZC’z4 ZCyy

Since the load is connected solely between the outermost conductors, we need only concern ourselves with
single or equivalent series impedances that mirror that connection.

Having determined all of the pertinent matrices, all that remains is the utilization of space-
time diagrams to track the propagation of the transient TEM waves. This is accomplished with voltage
vectors and matrices. As Figure 4 indicates, all potential differences are measured with respect to the
bottom-most plate. In this case, the electrostatic potentials are shown. If the stack of Blumleins shown in

Figure 4 is charged to a voltage ¥, the resulting static potential vector is

VO

sl-|,,
0
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ref
Figure 4: The “illustrated” components of the static potential vector. “Vector” simply refers to a single

column matrix.

and the static voltage matrix is

bs]=|
-V, 0 -V, 0

Once the switches are closed, the first transient waves are established. Their voltage component is

(e e

[2c]+[zr1]

determined by

When the waves reach the load termination, they undergo another reflection governed by the scatterifg

matrix [SL]. Thus, the second set of traveling waves have voltage components evaluated by
[ve2]=[sLrn].
(Although not shown here, the total voltage vectors and matrices for each termination are also computed.)

During the third transit time, the second set of transient waves reaches the z = 0 termination, where the

scattering matrix is /SO and forms the third set of traveling waves whose voltage components are
[ve3]=[sofrz2].
The process is repeated for ten transit times, which is usually long enough to establish the dissipation of

energy for well matched loads.
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Results

The simulation of pulse formation and propagation in stacked Blumleins is performed by a
program written with MATLAB (Version 4.0 for Windows). This analysis is very versatile despite being
limited to a single homogeneous dielectric and only one basic conducting plate geometry. The flexibility
arises from the number and type of variables that are required as input. First and foremost, the user must
enter the number of Blumleins being stacked. The code is capable of handling a single Blumlein, as well as
stacks of two or more. If the user wishes to investigate multiple Blumleins, they are then prompted for the
vertical distance between the Blumleins, where an entry of zero corresponds to shared conductors, as seen
in Figure 1.

The user must enter the length and width of the constituent conducting plates of the Blumleins, as

well as the distance that separates them. The thickness of a plate is considered infinitesimally thin. Each

" plate in the stack is assumed to have identical dimensions and equal vertical spacing. The volume between

and around the conductors is filled with dielectric. The relative permittivity is, therefore, the final bit of
structural information requested as input.

The accuracy of the simulation depends on the number of elements into which a cross-sectional
slice of the stack is divided. For instance, reasonable results can be obtained if a conductor with a width of
2.54 cm is sectioned into 15 elements. The code, in that case, takes a noticeably shorter amount of time to
run than if 50 elements were chosen. Of course, better results are generated as the number of elements
increases, but this is at the expense of increased computational time. The choice of acceptable accuracy is
left to the discretion of the user. For all plots displayed here, however, a 2.54-cm wide Blumlein is always
divided into 50 subsections.

The user must also input the operational parameters of the stacked Blumlein system. These include
the charging voltage and the load impedance. As mentioned earlier, two different load impedance values
are calculated and displayed on the screen. The user can choose an impedance that optimizes either the
voltage multiplication factor or the power of the main output pulse, or opt for another value entirely.

Due to errors that will arise (division by zero/multiplication by infinity), every open and short are
assigned finite, non-zero values. Since this simulation is wont to treat a closed switch as a short, the user.is
presented with the opportunity of determining the resistance of the switching element. Although this
treatment is not entirely accurate, it is more than adequate for this research, for the creation of a thorough
mode! of a semiconducting photocondutive switch or a thyratron is beyond the scope of this work.

By requiring all of the variables mentioned above, the model is more complete than if the user
were only to input the number of Blumleins, the characteristic impedance of the Blumleins, and the
charging voltage for the system. Even though a single characteristic impedance is measured in the lab,
theory dictates that it is produced by a combination of characteristic impedance measurements. Therefore,
this computer model of stacked Blumleins incorporates all of this information to determine the capacitance
and characteristic impedance of the structure. These matrices are then used to calculate the initial energy

stored by the Blumlein and the “matched” load impedances, respectively. The initial energy is, in turn,
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utilized in the computation of the energy efficiency of the stacked Blumlein. The load impedance is fed into
the portion of the program responsible for generating the scattering matrix for the z = / termination, and also
into the equations used to compute the final energy seen across the load.

Because of this, the matrices for characteristic impedance, capacitance, and scattering at both ends
of the stacked Blumlein are displayed on the screen. It is trivial to modify the code so that it displays any
other matrix or vector encountered during each run of the program. This might include the voltage vector
for any of the transient waves or the matrix of total voltage between all the plates in the stack for either
termination at any desired time. All of the pertinent information about the structure and operational
parameters of the Blumleins is available on the generated plots of voltage against transit time, which can be
printed to the default printer. Perhaps the information of most interest that appears on these graphs is the
energy efficiency and the voltage multiplication factor. The efficiency is determined by dividing the energy

in the output pulse by the total energy initially stored by the stacked Blumleins, or

2 2 2
A1 1 -1 -1
3 C V - C1+l AR < C1+3 Wiy GV,

Einitial =Z Z + + + 424 ’

i=1 | j=1 k=2 1=3

if, for example, there are two Blumleins, and

V 2
E jpu = —=2221.
final — ZL

The energy initially stored in the structure is calculated by adding the energy stored between all plates.
Obviously, some sets of plates store nothing because the electrostatic potential between them is zero. The
output energy is comparatively easy to compute as it involves only the maximum voltage of the main output
pulse, the temporal width of that pulse, and the load impedance.

The voltage multiplication factor is calculated by dividing the maximum output voltage of the main

pulse by the charging voltage.

Vaut max
VMF = ——

charge
Ideally, the voltage multiplication factor should be equal to the number of Blumleins being stacked. As tile
following simulation results indicate, this hardly ever occurs. What is noticeable, though, are the trends that
appear with changes to input variables such as the number of Blumleins and the choice of load impedance.
As can be deduced from the plot below, there is a definite correlation between efficiency and the number of
Blumleins. It is easy to conclude that as the number of Blumleins increases, the efficiency suffers a marked
decrease. The graph in Figure 5 shows this trend as the ratio of plate separation, d, to plate width, w, varies.
We might gather from the plot that a more efficient machine can be built by minimizing the geometric ratio.
In reality, though, there is a limit as to what is physically plausible. The graph also suggests that the number
of Blumleins in a vertical stack should be kept below four or possibly five due to the fact that beyond this

limit, the efficiency drops below what most would consider an acceptable level.
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Figure 5: Variation of efficiency with the number of Blumleins in a stack and the geometric ratio, d/w.
The following variables are constant: dielectric constant (transformer oil), Blumlein separation (none), and
load impedance (efficiency maximized).

The trends of the graph in Figure 5 are hardly surprising. As the geometric ratio increases, the
capacitance decreases and the characteristic impedance increases. Clearly, the amount of energy initially
stored will be affected (diminished) by the change in capacitance. The variation in the characteristic
impedance translates to an alteration of the computed load impedance suggestions. As the characteristic
impedance increases, so does the load impedance since it is calculated with the elements of the
aforementioned matrix. Recall, too, that the load impedance is used to determine the termination
impedance matrix, which is in turn involved in the evaluation of the scattering matrix for the load end of the
Blumleins. Additionally, the characteristic impedance matrix is itself a component of the scattering matrix
calculation. Thus, a change in the elements of the scattering matrix will evoke a response in the vectors and
matrices of the voltage component of the waves formed and propagated by the Blumleins. As the maximum
voltage across the load diminishes, so too will the energy and efficiency. Clearly, then, increasing the
geometric ratio only serves to decrease the efficiency of a stack of Blumleins.

As the number of Blumleins increases, field fringing and coupling occurs between more and more
conductors. The strength of field coupling is related to the characteristic impedance. The strongest
coupling (smallest value of Zc) occurs between adjacent plates. Hence the majority of energy is found in
the waves propagating between these plates. Even though the coupling associated with non-adjacent plates
is weaker than that for adjacent conductors, the overall effect is the reallocation of some energy that would
have otherwise been propagated between the adjacent conductors. We can infer, then, that the voltage

associated with the propagating waves likewise diminishes. Thus, the efficiency of the device is lowered.
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Figure 6: Variation of the voltage multiplication factor with the number of Blumleins in a stack and the
geometric ratio, dw. The following variables are constant: dielectric constant (transformer oil), Blumlein
separation (none), and load impedance (efficiency maximized).

Parallel conclusions can be drawn upon investigation of the plot of the voltage multiplication
factor versus the number of Blumleins (Figure 6). Because the maximum output voltage decreases with
increasing d/w, the voltage multiplication factor will also suffer the same fate. Once again, the model seems
to suggest that stacks of no more than four Blumleins are worth constructing in this particular situation.

The impact of conductor spacing is clear. Now consider the effect of the spacing between
Blumleins, as depicted in Figure 7. We would expect the efficiency to fall off as the Blumlein separation
increases for the same reasons discussed when the conductor separation was increased. Basically, the losses
arising from the coupling of fringing fields become more pronounced with larger Blumlein separation
because an additional wave is propagated between the top-most conductor of the lower Blumlein and the
bottom-most conductor of the upper Blumlein. The wave is obviously eliminated when these two
conductors are replaced by a single, shared plate. No energy is initially stored between these two
conducting plates (they are at the same potential), so increasing the separation between them does not affect
the amount of energy initially stored in the stack of Blumleins. The energy of the wave that travels between
the conductors after switch closure must therefore detract from the energy available to the waves propagated
by other adjacent conductors, thereby lowering the efficiency of the device.

The marked difference in efficiencies does not appear when the voltage multiplication factor is
plotted against the number of Blumleins for a variation in Blumlein separation (Figure 8). Instead,
increasing the separation between the Blumleins apparently increases the voltage multiplication factor. This
comes about as a result of the extra wave propagated between each pair of Blumleins. Its voltage adds to all

of the others, increasing the output despite the fact that all of the other waves have a slightly lower voltage

as a result of the presence of that wave.
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Figure 7: Variation of the efficiency with the number of Blumleins in a stack and the Blumlein separation,
bisep. The following variables are constant: dielectric constant (transformer oil), geometric ratio

(d/w = 0.3), and load impedance (efficiency maximized).
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Figure 8: Variation of the voltage multiplication factor with the number of Blumleins in a stack and the
Blumlein separation, bisep. The following variables are constant: dielectric constant (transformer oil),

geometric ratio (d/w = 0.3), and load impedance (efficiency maximized).

The next two plots (Figures 9 and 10) nicely illustrate the effect that different load impedances

have on the efficiency and voltage multiplication factor. Earlier, we saw the formulation of a “matched”

load by omitting or including the characteristic impedances of some of the non-adjacent plates. It was

suggested that a truer match might be made by including more characteristic impedances. In other words,
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the latter formulation was more accurate because it allowed a larger portion of the wave to be transmitted,
which meant that there were fewer reflections and that the stored energy was dissipated more quickly.

Since the load impedance is determined from the characteristic impedance matrix, the inclusion of
more characteristic impedances in the load impedance computation results in a smaller calculated load
impedance. Clearly, this also affects the scattering matrix for the load end of the Blumlein, thereby
decreasing the maximum output voltage. Since the change in voltage is less pronounced than the change in
load impedance, a greater efficiency is achieved. Thus, this method of determining a “match” is referred to
as optimizing for higher output power or greater energy efficiency.

The omission of the characteristic impedances of non-adjacent plates, on the other hand, results in
an increased load impedance because nothing is in parallel with the series equivalent of the adjacent plate
impedances. This, then, decreases the efficiency because the output energy is divided by a larger number,
despite the small increase in the maximum output voltage. It does clearly increase the voltage
multiplication factor (Figure 10) because of that increase in output voltage. Hence, this “match” is denoted
as optimization for a higher voltage multiplication factor. Obviously, if we were designing a stacked
Blumlein pulse generator, we would have to decide which is more important for our intended application, a

device which has better voltage multiplication capabilities or one that produces higher power pulses.
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Figure 9: Variation of the efficiency with the number of Blumleins in a stack and the load impedance, Z;
(energy efficiency or voltage multiplication number optimized). The following variables are constant:
dielectric constant (transformer oil), geometric ratio (d&/w = 0.3), and Blumlein separation (none).
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are constant: dielectric constant (transformer oil), geometric ratio (d/w = 0.3), and no Blumlein separation.

Conclusions
(Due to the limited amount of space available, this section will be kept unusually brief. For a more in-depth discussion, please refer
to my dissertation.)

The model of stacked Blumleins developed for this research was verified using three different
procedures. The matrices for the capacitance, characteristic impedance, and scattering were checked
against a frequency-domain software package from France called CRIPTE.® Excellent agreement was
exhibited between the two models. The efficiency was compared to a QBASIC analysis written by lab
scientist Jim O’Loughlin’ that approximated a stack of Blumleins as a network of resistors. Due to major
differences in treatment of this problem (circuit theory versus electromagnetic wave theory), agreement was
not as well defined, although both methods concur that constructing stacks of more than two to four
Blumleins would be unwise because of operation inefficiency. Finally, experimental results for a stack of
two Blumleins were used. Again, the model agreed with reality as well as could be expected considering
the approximations made during code development. ’

Obviously, more work can still be done. Future extensions of this research might include the
introduction of multiple dielectrics, conducting plates of variable width, or conductor thickness. A more
rigorous treatment of the terminations should also be attempted. For example, non-simultaneous switch
commutation might be investigated, or perhaps the effects of attaching a TEM horn antenna might be
explored. This naturally leads to questions pertaining to the determination of a better matched load.
Finally, different parallel plate Blumlein arrangements should be considered, say side-by-side instead of
vertical stacking. Clearly improvements can be made, but the model, as it currently stands, does provide a

reasonable starting point for a researcher designing a stacked Blumlein pulse generator.
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Abstract

Using the results derived by Akira Matsumoto and Kenichi lwamoto
published in two papers'?studying Morse potentials, we attempted to calculate
transition probabilities between vibrational levels. We used two methods for
calculating the probabilities, the first method involved numerically evaluating th_e
analytic eigenfunctions and the second method was to evaluate the analytic :
solution to the electric dipole matrix elements, both of which were provided by

Matsumoto and lwamoto’s papers.




Introduction

Much research has been done on electric dipole matrix elements and
vibrational transition probabilities and much data has been provfded to
approximate these values. However, there is still more to be learned at high
vibrational levels and there is still a need for better, more accurate models of the
potentials of diatomic molecules. We attempted to get numerical values for the
current analytical solutions to then use for analysis of spectra obtained in the

laboratory.

Methodology

For the first approach, we wrote computer programs in Series Processing
Language for use with Dadisp software. The code was written in a style similar
to C and the purpose of the programs was to numerically calculate the solutions
to the analytic eigenfunctions. The eigenfunctions contain associated LaGuerre
polynomials, so we had to write code to evaluate these polynomials using the
recurrence function for these polynomials. Once the numeric results for the
eigenfunctions were obtained, we plotted the Morse potential (using the equation
in the two referenced papers) and overlaid the eigenfunctions (which were
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normalized) with the potential and saw that they were well behaved. The next
step in this project is to numerically calculate the transition probability between
two levels by integrating the product of the two eigenfunctions and the radius
(the operator). We expect that these numbers will match the numbers obtained
in our other approach to the problem.

Our other approach was to take the analytic solution to the electric dipole
matrix elements derived by Iwamoto and Matsumoto®* and numerically evaluate
it for molecular nitrogen using experimental spectroscopic values for We, WeXe
and r, taken from the Journél of Physical and Chemical Reference Data’. We
confirmed that the programs written to carry out the calculations were working
correctly by first reproducing the data for CO reported by Matsumoto and
Ilwamoto'? before we then changed the parameters for our own experimental
interests (N2). We were then able to plot this data as relative transition
probability versus the vibration level and see the trends in probability of
transitions as you go up in vibrational level. The next step in this project is to
see if these numbers match the probabilities calculated using the original
eigenfunctions and to apply this information to experimental data. By
theoretically modeling the transition probabilities, we can analyze experimenta.I

spectra by comparison of theoretical predictions to experimental results.




the two phases of the project have not yet been compared. Once it can be
confirmed that both approaches to solving the problem give logical results, then
these values can be reported and utilized in analysis of experimental spectra.
However it can be stated that at this point, all codes are running properly
and appear to be giving correct numerical results. This is evidenced by
overplotting the eigenfunctions with the Morse potential and seeing that they are
well behaved as well as seeing reasonable looking plots of relative transition
probability versus v level. This project is still underway and hopefully there will

be some quantitative results to report in the near future.

Discussion

One suggestion for improvement to this experiment that may be
implemented before its conclusion is to utilize a more powerful and scientifically
capable programming language to carry out the calculations for actual data
analysis. There still exists some concern that round off error and the limitations

Results
At this point, it would be preliminary to report any official results because
6-5



on variable size may cause deviation from actual values. This is an area still
under investigation. The programs involve very large numbers and exponents
as well as utilize complex mathematical functions such as the gamma function
and the recurrence functions for associated LaGuerre polynomials. Therefore
the values of some variables within the program often approach the
technological limits of the system on which they are being run.

However our results at this point in the project are reasonably similar to
those found by other researchers. This is evidenced by the ability of our
programs to reproduce the électric dipole matrix element values for CO reported

by lwamoto and Matsumoto'?

Conclusion

At this point in the project, we feel that we have developed accurate and
functional programs to calculate Morse potentials, vibrational transition
probabilities and vibrational electric dipole matrix elements. We intend to
finalize these programs, confirm the accuracy of their results and utilize this

information in the analysis of spectroscopic data taken in the laboratory.
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INTRODUCTION

The situation often exist in adaptive optics that the geometry of wavefront sensing is different
than that of wavefront correcting. By virtue of Nyquist Theorem, more wavefront sensing
elements are usually required than for wavefront correcting, and the geometrical arrangement
may differ. In our case, the wavefront sensor has rectangular geometry while the correcting
element has hexagonal. Another situation arises when the reconstructed wavefront solution is
noisy and must be spatially filtered to the lower order modes. We propose a solution using the

Fluidic Interpolator Module(henceforth called FILM).

An aqueous solution of CuSO, provides for a resistive medium which allows for freedom of
movement. Electronically driven, etched copper circuit board traces and pads with the input
geometry provide for spatially defined potentials in the medium. A receiving plate etched with
the field distribution and resulting fluid potentials interpolates and smoothes the output plate
data. When the output plate is “close” to the input plate i.e. the separation is much less than the
separation between input plate elements, the output plate senses essentially bilinear
interpolation. Separating the plates tends toward averaging of the fields, and hence 2-D

smoothing and interpolation of the output data.
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FILTER FOR WAVEFRONT SENSOR-TO-CORRECTOR INTERFACING.

Tyrone Ospino-Marthe

Methodology

The procedures for solving these problems are the following:

a. | need to calculate in every point in the square 16x16 the capacitance, next calculate the
contribution to every point to the square on the hexagonal, and to know the values for the

capacitance in every 127 points in the hexagon.

b. Assuming and entry to voltages in the wavefront, calculate the total voltages in the square.

C. Calculate next the Charge ih every point to the square 128 X 128.

d. cCalculating the first layer, make it 16 times and calculating the 16 layers.

e. Addition noise to the principal function and make the process other time.

f. After to calculate the first layer, calculate again the 16 layers. .

g. Make the electronic part constructing two parallels boards , one square 128x128 and other
hexagesimal 127 under a “place” fill with C,SO,+5H,0, with the three(3) axis movements.

Results

Here we have to solution many problems, one to the principal restriction are that | need to work
in three-dimensions, and the formulas and bibliography's don’t mentioned this cases in his
examples. First, need us to solve and have clear the physics process here.

We idealize an square to 16x16 and apply this formulas for the corners, sides and interior.

CORNERS qij = qo(2+1/V2)
SIDES i = qo(3+2/V2)
INTERIOR qij = qo(4+4/V2)

must be remember , in this point the calculate is to the relative capacitance not the “real”
capacitance, with this values we making a CAPACITANCE MAP ( in all this process, the

simulations, | will make it with matlab’s programs).
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Next to this calculus, find the contribution for every point to the square over the hexagon,
calculate in every 127 point to the hexagon with 127 formulas, seeing geometrically the
contribution with a superposition to the hexagon over the square and neglected the corners .
Maybe one way to make this calculus are using numerical methods, maybe the relaxation
method, images method, or other , but we can't used for geometrical problems.

Now knowing the contribution into the boards , we continuos with a program for to make a net
with only voltages in specifics points in a matrix to 128x128, the positions are: (row ,column)

1.1 1,9 1,18 1,27 1,126 1,128

9,1 9,9 9,18 9,127 9,128

18,1 18,9 18,18 18,126 18,128

128,1 128,9 128,18 128,126 128,128
table-1

, this are others programs with Matlab (with your graphic for analyze the behavior).

Next to this, generates the matrix, we generates other matrix in 3-d and put the anterior matrix ,

how the floor to this one.

Now the procedure is calculate with the numerical method, iteration method, the values to the

voltages in the other points in the net, different to zeros .
Here we have positions for to solve in the borders and in the interior to the ‘imaginary’ cube.

£

The method work graphically in this form:
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In similar manner make it the other derivates, point’s(d,f,c,b and e),

next have:
4 | __él(éKJ Ipo- (é%X%Y P)‘(é?ZQY\CD
ax? W= ax\ax) P07 A
V=V, =V, +V3/
(Ah)?
V,+V,-2V0
(Ahy®

with the similar procedure, we calculate the other two axis (y,z), and have in the final:
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V,+V,=2VO+V, +V, =2V, +V +V, -2V, =0
Vi+V,+V, +V, +V,+V, -6V, =0

v, S+ V4V 4V +V%

We make the programs relative a this problem and | find a “solution”, the iterations or the
number of times, has many variations, the variation range are between [10-100] loops, we
obtain various graphics showing the behavior to the simulation. We know that the behavior is
good, analyzing the graphics. The betters behaviors was analyzed with 100 iterations, yours can

see the next graphic.

simulating the floor of 3-d voltage matrix
10

10\...___..... :

150

We look in this graphics, that have it a smooth slope, the peaks correspond to values generated
by the “randomly peak” function , the range to the function are between [+10,-10] volts, and the

extremes values in the anterior picture are +10 and -9.24 volts.

Other question in this part are to maintain fixed the points showed in table-1; Only the points
around every these anterior points, will be modified . With this anterior process, we will fill the
floor to the cube, every 128x128 points will has a value. The graphic to these fixes points are :
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basic matrix-mvol

20

40

60

80

100

120

20 40 60 80 100 120

Now we work with the mother matrix (mvol) and will fill it in the “space” with 16 levels, graphing
the first, eight and last levels, the first level is the same that the anterior “smooth peak matrix”
(mvol3d). With a program, | calculate the voltage in every point, in this case, could change the
values in the “specials points”, and in the formula, use information about the upper space, we

will neglected by be zeros in all the process; in this program the principal formula is:
v(i, j, k) =00, j,k-D)+v(i-1Lj,k)+v@i+1,j,k)+v(i,j- Lky+v(i,j+1,k))/5

this formula has changes if we work in the corners or in the borders to the spaces, modifying the
numbers of factors by 3 or 4 (dependent). In this program we recalculates many times using
iterations in the loops hoping by betters solutions and more exact values in every point.

The results, was good, we maintain the smooth slope and the figures are corrected in every layer
with the iterations without error in the borders (we has many in the process), our last proof was
with 40 iterations and finding the information in the 16 layers, the three graphics show the
advantage using these mathematical method, and the figures, repeat again, look very good.
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control graphic z=2 lterations= 40

150

If yours look the graphic (z=2), yours can see the peaks and the uniformly picture, if you see z=8
and z=16, yours can see now how the method correct the images and convert a unstable picture
in a smooth layer,

cortrol graphic 7=8 teratons= 40 contral graphic 2=16 Herations= 40
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Next to the anterior process, we add noise to the signal and repeat a similar process that the
anterior. We work with a noise signal generated with this equation:
noise = (2.5*((2*rand(16))-1)},

when rand() is the Matlab random function, [0,1], the random data’s interval.
Now the final signal = “pure” signal + noise signal

The “pure” signal is generated with a smooth peak function, in this simulation.

The process was similar but the result are different, logically.

In the reality, this is the kind of signal with that we work in the future, remember, all this process
is only computer’s simulation’s, when will go to the experimental table, or to the space, we will
work with many types to noise and with other types of turbulence.

With this process have this pictures:

First layer-iterations= 100

15\.."‘_....

150

and the other graphic, with a comparison images picture,
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combination - images graphic
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40
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100
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20 40 60 80 100120

Now we make the process with the 16 layers and the graphics to the second, eight and sixteen

layers are in the following pictures .
Yours can analyze the images process between the first layer , the eight layer and the sixteen

layer,

contral graphic =8 Herations= 40 control graphic =2 control graphic

5

20 40 BO 80 100120

04"
analyzing the last 10 rows




control graphic z=16 Iterations= 40

150

yours can see the change and how convert these method a distortion graphic in a smooth and

clear picture, the mathematical method was functioning.

Now the process will consist in to construct the “electronic part®, we will go now to the Real
world, | need now to construct the hardware for all the process, to make all these simulations,

“real”.

I will construct two parallels boards, one square 128x128 and other hex127, these boards are

immersed into a solution of cupric sulfate(C,SO,).

In the principle, the boards are fixed in the same axis, but next can it moved one into the space,
the system has movement in the X axis with one plaque fixed and the other moved (hex127
plaque), moving in the Y axis (up, down), one fixed -again and the other with movement and for
last in the Z axis (left-right), how a car drive, again, one fixed and the other with movement.

I need too a mechanical system for control the movement to the board.
Yours can see the next schematic picture, and in there explain to yours graphically, how work in
the real world the summer project, in this case put the in’s and out’s in the intermediate

positions to the schema .
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The picture is this:

—_____’ hex 12}.
| CcCCD
camera
in out in out in out

For this process , the solution between the boards (C,SQa, cupric sulfate), will server to us how
medium to the * electric field movement” , if when we put near or fair the boards, this solution

will work how medium and iterpolator.

| will construct the two terminals (one for transmit other receiving), one for every board, the
“electricity” go out by the 128x128 terminal and will receive it the hex127 terminal, and the
electric waves “surfer” into the cupric sulfate, when the process are finish, will see the changes(if
have it) to the electric field and we can find the “perfect distance” between the boards and we
know , what values has between the different separations, and will reconstruct the initial signal
(square 128x128) in a final signal (hex127), we need too construct others boards, one for square
and other for the hexagesimal board, with this boards, we make the amplification to the signal
and transform a initial signal to 16 in a 256 signal, we will transmit the “pulses” and next to the

capture, we make other board and make the remap in a hexagesimal 127.

How chemical information, we have that the volume susceptibility to the water is
-80x10°® and for the cupric sulfate is C.SO,*5(H,0) =+176x10°

This information will need it to calculate the perfect distance and the electric field make it how a

constant value.

Others chemical properties are:

1. The cupric sulfate is soluble.
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2. The cupric sulfate is soluble into the water
3. The chemical reaction by which it is formed is called a precipitation reaction.

4. The electrical properties to the elements are:

The last are only a few properties to the solution.

Re-writing about the electronic part, we can say that will need op-amp in the boards, in the
moments don't have a electronic schema to the boards.




Conclusions

Maybe the conclusions about my summer job are only a few words, maybe the best or the
betters conclusions are when | finish all the project, including the electronic part and makes the
finals and “real” measures, the following punctual information reflex my personal conclusions to

this part to the project:

1. Sometimes the mathematical method, in this case, iteration method, could help to the
solution for our physics problems.

2. In this case, we can look the process graphically and we could saw how the figure change in
every layer, to a not very smooth initial graphic, transform in a very smooth and “clean” final
graph(with and without noise).

3. If you compare the noises graphics and the without noise graphic you can say that the initial
graphics are very , very different but in the final had “similar” smooth pictures, saw the right
bar in the graphic and saw to you the ‘VOLTAGES"” intervals , are both are similar.

4. In the real simulation, we will hope that the cupric sulfate work how the medium into the
boards, and the “layers” in the computational simulations, are the different distances in the
hardware world.

5. We can reconstruct initials signal, wavefront, by example, in pulses, and reconstruct in any
form, in this case a 16x16 > 128x128 in 16 different layers.

Matlab are a very good software-packet for solve mathematical/physics problems.
The team work is very important to solve any problem, | received here, many and useful

help, thank you for all.
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Abstract

Magnetized target fusion provides a method to reach fusion ignition conditions that is intermediate
to inertially confined and magnetically confined fusion schemes. Although a magnetic field is used
to inhibit thermal conduction from the plasma to the confining liner, plasma-wall mixing still poses
a problem. When this mixing occurs, increased impurities in the plasma reduce the plasma tem-
perature and prevent the plasma from reaching ignition conditions. Computer simulations studying
the effect of plasma-wall mixing due to the Rayleigh-Taylor instability in an imploding cylindrical
linear are presented. The simulations are performed using the 2D magnetohydrodynamic code,

MACH2.
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1. Introduction

Achieving controlled nuclear fusion has been a goal of the scientific community for several decades. Commonly
employed schemes include Inertial Confinement Fusion (ICF) and magnetic confinement (MFE). Typical ICF methods
compress a gas to sufficient density and temperature to initiate fusion. For the minimum laser energy, the implosion
process must occur on time-scales shorter than the time required for thermal conduction into the capsule wall. This
requires expensive driving systems which deliver the necessary energy on nano-second time-scales. Compressing a
non-magnetized plasma on micro-second time-scales provides time for the high-temperature plasma to transfer energy
to the environment. This reduces the plasma temperature and hence, the fusion rate. Yet the presence of a sufficient
magnetic field within the plasma can reduce the thermal conduction between the plasma and its surroundings. This is
the idea behind MFE designs. An alternative approach, whose density and time scales fall between those of ICF and

MFE, is Magnetized Target Fusion (MTF).

Forming a union between ICF and MFE, MTF is a two-step process. The first stage requires the formation of a warm
(~100 eV), magnetized (~100 kG) wall-confined "target” plasma prior to implosion. The "target” plasma is then
quasi-adiabatically compressed by an imploding liner during the second stage. The joining of these two methods
requires mating a plasma formation system with a target implosion driver. At the Air Force Research Laboratory--
Phillips Research Site, a plasma formation system has recently been combined with a quasi-spherical liner implosion
system [1]. Since the magnetized plasma reduces the rate of thermal losses, electrical pulsed-power tech{nology
(which operates on micro-second time-scales) can be used. Such pulsed-power implosion experiments, similar to
those required for MTF, have already been conducted [2-4]. Thus, the necessary technology and experimental know-

how for MTF exists.

The principle feasibility issue for the MTF concept is the mixing of the fuel and boundary material. When a plasma is
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in contact with a material surface, heavy ions can be sputtered off the material. These sputtered ions are highly ionized
and are responsible for large amounts of radiation losses. This increased radiative loss cools the plasma and reduces
the chance of reaching ignition conditions. Although the magnetic field is intended to provide a barrier to plasma
particles reaching the liner, instabilities can develop between the plasma and the liner that reduce the effectiveness of
the magnetic field. A well-known source of non-uniform behavior in electromagnetic implosions is the Rayleigh-
Taylor instability. In ordinary hydrodynamics, this instability occurs when a heavy fluid is supported, against the
force of gravity, atop a light fluid. The interface between the two fluids becomes rippled and allows the heavy fluid
to mix into the light fluid. In MHD, the roles of the heavy and light fluids can be assumed by the plasma and magnetic
field, respectively. The Rayleigh-Taylor instability occurs when the acceleration points from the heavy fluid (plasma)
to the light fluid (magnetic field). During implosion processes, the interface between the plasma and the liner can
become unstable between the times of maximum inward liner velocity and maximum compression. In the simulations
considered here, there is no magnetic field in the plasma. For this case, the plasma plays the role of the light fluid
and the aluminum liner that of the heavy fluid. The present work considers plasma-wall mixing in a cylindrical liner

due to the Rayleigh-Taylor instability.

Using the 2-1/2 dimensional magnetohydrodynamic code, MACH2 (Multiblock Arbitrary Coordinate Hydrodynamics,
2D) developed at the Air Force Research Laboratory -- Phillips Research Site, a cylindrical liner imploding on a
deuterium plasma is simulated. Section II provides a brief description of MACH2. Section III details the simulation
model. The simulation results are presented in Section IV. Conclusions and future simulation considerations are

given in Section V. The input deck used for one of the simulations is provided in the appendix.
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II. MACH2 Description

MACH2 [5] is a finite-difference code that solves the time-dependent, single-fluid, multi-temperature MHD equations.
Using an Arbitrary-Lagrangian-Eulerian multi-grid scheme, the problem geometry is constructed from multiple
blocks (logically rectangular collections of cells) of arbitrarily shaped quadrilateral cells, in either planar or axi-
symmetric coordinates. The code calculates all three components of the velocity and magnetic field, though no vari-
ation is allowed normal to the problem geometry (i.e., no z-dependence in planar problems or theta-dependence in
cylindrical problems). The finite-differehcing is carried out according to a finite-volume technique, along with
second-order Van Leer convection and flux-conserving, constrained transport for magnetic advection [6]. Solving the
resistive MHD continuity, momentum, energy and magnetic field equations, MACH2 closes the system of equations
through the equation of state, of which several options are available. Among these are analytic and tabular models
(SESAME tables at Los Alamos National Laboratory), which include the transport coefficients. Several options are

available for radiation modelling. Multiple circuit solvers are also available.

III. Simulation Model

The simulation model [7] considers a 30 cm high aluminum liner with an inner radius of 4.9 cm and wall thickness of
0.1 cm. The liner encloses a deuterium plasma with a particle density of 10" ¢m™. The liner and plasma originally
have a temperature of 27 meV and 300 eV, respectively. The liner is connected to an RLC model of the SHIVA STAR
capacitor bank. At t=0, the applied voltage is 84 kV with an inductance of 39 nH and resistance of 1 mQ. The
deuterium properties were determined from the SESAME tables, except for the resistivity and thermal conductivity for
which a Spitzer model was used. For the aluminum, tabular values were used for the resistivity and thermal conduc-
tion coefficients, along with a Steinberg-Guinan elastic-plastic model. For simulations run in Eulerian mode, a

hydrogen gas was allowed to flow through the outer boundary (i.e., radius) of the grid. This prevents the volume left
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behind by the moving liner to be filled with a non-physical aluminum gas. The hydrogen gas employed a tabular

equation of state with constant electric diffusivity (104 mzls) and thermal conduction coefficients (104 W/m-eV). The

gas was brought in at 0.2 eV and 0.01 kg/m3.

Preliminary simulations were run in a Lagrangian fashion to 30

)
allow the grid to follow the liner. These simulations used the g 20r
L .. E 10 c;nr:;::‘si?;n
initial conditions, as described above, and ran for 25 us. The -g

€ o
problem geometry was scaled from 30 cm down to 1 cm; the :

T-10r maximum
plasma and the aluminum were each dimensioned with 8 cells i} 2 JZ.';ZI&
in the radial direction and 16 in the axial direction. As indi- 20 , . ) -

0 5 10 15 18120 23 25

time (us)

Figure 1 Radial momentum (in a 1-radian slice of the full 2=,
axi-symmetric simulation) from a preliminary study. The temperature,
velocity and mass density profiles, as well as the magnetic field and
current, at t = 18 us were used as initial conditions for the stability
simulations. For the run shown, the maximum inward velocity
occurred at t = 18.1 ps and the maximum compression at ¢ = 23 ps.

cated in Figure 1, the liner reached a 2:1 compression ratio and
a maximum inward velocity at ~18 us. At approximately 22.5
Us, maximum compression occurred with a radius of about 1.5

cm.

To reduce computation time, the stability simulations were started at 18 ps, using the results of the preliminary runs
as "initial conditions". The temperature, mass density and velocity profiles, as well as the magnetic field and current,
at 18 us were used to initialize the problem. These were run for an additional 5 pis (the case of 64 axial-cells was run
for 4 ps) in an Eulerian fashion to prevent "twisting” of the grid. In order to stimulate instability, a sinusoidal mass
density perturbation was added throughout the volume of the aluminum. In each case, the perturbation amplitude was

+10% with four complete cycles in the axial direction.

Clear indicators of mixing between the plasma and aluminum melted off the liner are the radiation cooling rate and the
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neutron production rate. An emission radiation model was used. It computes the time rate of change of the specific
internal energy according to the opacity. The aluminum was allowed to radiate only for cells in which the aluminum
density was less than 100 kg/cm3 . The neutron production model considers only those cells that are predominately
deuterium. For each such cell, the plasma mass density and temperature are used to compute the number of neutrons

produced. This model is not considered to be extremely realistic, but does provide qualitatively acceptable results.

For the Rayleigh-Taylor instability, the fastest growing modes are those with the shortest wavelength. Thus, the
cell-size governs which modes will be present in the simulation. Since the proposed MTF geometry has a height of 30
cm, studying a mode with a 125um wavelength would require at least 240 cells in the axial direction, as well as
sufficient cells in the radial direction. Problems with such a large number of cells require extremely long simulation
run-times. In order to the reduce the number of cells and shorten the execution time, the height was scaled to much
shorter lengths. This change in height reduces the liner inductance and ultimately alters the current flowing through
the liner. In order to maintain the same current as would flow through a 30 cm liner, an option was added to MACH2
that scales the inductance and the voltage along the circuit path. This option is called hisclfac and occurs in the
contrl namelist (It is applied only to the first circuit element.). Defaulted to 1, htsclfac need only be set if scaling
is desired. Using a hisclfac=10 means that a 30 cm problem can be simulated using a simulation height of 3 cm.
This reduction in the total number of required cells for a particular resolution allowed significant improvements in

execution times.

IV. Simulation Results

To discover when the instability becomes significant, three different axial cell dimensions were considered: 32, 64

and 128 cells per centimeter. Figure 2 shows the radial momentum for each run, including a run with no perturbation
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and 32 cells per centimeter, and indicates that the pertur-
bation delayed the time at which the liner pinched for each
case. However, a significant instability was not obtained
until 2 mode wavenumber of 641 cm™ was considered
(i.e., 128 cells per centimeter). The reason for the lack of
compression can be discerned from the radiation cooling
rate, shown in Figure 3. At ~20.5us, spikes develop in the
radiation caused by aluminum ions sputtering off the liner
and mixing with the plasma. These ions then radiate sig-

nificant amounts of energy and cool the deuterium. Com-
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Figure 3 Base-10 logarithm of the scaled radiation cooling rate. The
radiation rate is scaled by multiplying the rate by the ratio of problem
height to 0.5 cm (the k = 167 and non-perturbed height); this gives each
case the same volume properties. The perturbation has essentially no
effect on the radiation cooling rate until the k = 64x case. Then,
considerable amounts of energy are lost. The reason for the larger
radiation rate for the k = 32r at the start and end of the simulation is
uncertain. (Wavenumbers are given in terms of l/cm.)
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Figure 2 Radial momentum for various Rayleigh-Taylor instability
modes. For k =327 and below, the perturbation has only a minor effect as
indicated by the case when no perturbation was applied. For the k = 647
case, the instability is highly evident. The "bump" at ~21.5us indicates a
drop in plasma pressure due to plasma-wall mixing lowering the plasma
temperature. The delayed "pinch-time" resulted from a reduced liner
inductance which decreased the driving current. The larger momentum
values at 18 ps for the perturbed cases is because the perturbation added
more mass to the liner compared to the non-perturbed case.
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Figure 4 Base-10 logarithm of the scaled neutron production rate. The
scaled rate means that the production rate is multiplied by the ratio of
problem height to 0.5 cm (the k = 167 and non-perturbed height); this
gives each case the same volume properties. At~21.5 ps, thereisa
sudden drop in neutron production for the 647 case due to increased
radiative losses. The larger production rates for 167 and 32, compared to
the unperturbed rate, are due to larger temperatures prompted by the
perturbation; this is probably a result of the method by which the neutron
production rate is calculated. (Wavenumbers are given in terms of 1/cm.)

paring the radiation cooling rate and the neutron production rate (see Fig. 4) shows that the plasma has lost sufficient
energy that the neutron production drops several orders of magnitude. This drop in plasma temperature results in a

loss of plasma pressure. With a lower pressure, the liner experiences less resistance to compress the plasma which

8-8




SIMULATION OF PLASMA-WALL MIXING IN A MAGNETIZED TARGET FUSION CONCEPT

Kenny F. Stephens II

causes the change in concavity of the radial momentum at 21.us, shown in Figure 2. The liner then pinches much
later than 22.us. This is related to the loss of material from the liner, reducing the liner inductance and lowering the

driving current. With a lower current, the liner is driven more slowly and thus takes longer to pinch.

V. Conclusion

Magnetized target fusion (MTF) is a promivsing possibility for break-even fusion production. Although the presented
results lack the primary appeal of MTF designs (i.e., magnetized plasma), they are necessary for an adequate under-
standing for the effects of high-Z contaminants in the plasma; such plasma pollutants can occur even in a magnetized
target plasma. The simulations demonstrate that a major source of instability during the compression phase is short-
wavelength perturbations. These can result from nonuniform mass density or uneven current flow within the alumi-
num liner . Furthermore, the complexity of the simulations and the numerous physical processes considered show that

MACH? can successfully simulate complicated phenomena with confidence.

The next step in the MTF modelling process is to magnetize the plasma. MACH2 already has a built-in option (FRC-
frese) to supply the desired magnetic configuration. Another consideration would be employing MACH2’s material
tracking interface. This would allow the liner to be followed in detail during the development of an instability. Also,
development of a more discerning neutron production rate routine would allow more quantitative results to be

obtained.
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Appendix

This appendix contains the MACH2 input deck for the k = 647 simulation presented above. It was run using a modified

version 9805. The modifications include a pwiinear option for roinit, uinit, vinit and teinit.

Scaled MTF. Multigrid. Strength. Eulerian. Perturbation. strength = true.,
pertQ2 meshon = .true.,
Scontrl nsmooth = 4,
t=18.0e-6, wrelax = 0.25,
dt= l.e-15, nigen =0,
dwmax = 1.0e-10, niter =3,
win = 23.0e-6, eqvol = 1.,
cyl=1, zeroghel = false.,
€0son = .true., multgrd = false.,
tsplit = 0, mglmax = 4,
radiate = .true., trackon = .true.,
radimod! = "emission’, htsclfac = 240.0,
ciron = .true., $end
neutrons = .true., Soutput
thimldif = .true., durst = 2.25€-6,
anisot = .true., ! display every 500
mgmodet = 'converge’, intty = "edits, 50,
nthrmax = 2000, intty(2) = "0",
fiximt = 0.4, neyctty = 500,
tdtol = t.e-4, dip = 0.1e-6,
tdrelax = 1.5, plot(0) = "cpt’,
diff = .true., ploy(1) = "grid’,

mgmode = 'converge’,

plot(2) ="velocity’,

iumaxrd = 1000, plottype(2) = *vector’,
rdtol = l.e-4, ploy(3) =velocity’,
rdrelax = 1.5, plottype(3) = 'contour’,
aresfdg = 0.05, plotcomp(3) = 'vectorz’,
aresvac = l.e4, plot(4) = "ni’,

hallon = .false., plottype(4) = 'contour’,

magon = .true.,
brbzon = false.,

plotcomp(4) = ’scalar’,
plot(10) = 'radheat’,

itpot = 10, plottype(10) = contour’,
potrelx = 0.25, plotcomp(10) = *scalar’,
hydron = .true., ploy(15) = "density’,
theb=1., plottype(15) = *contour’,
volratn = 0.8, plotcomp(15) = *scalar’,

courmax = 5.0,

plot(16) = "pressure’,

rmvolmm = 0.9, plottype(16) = "contour’,
itopt = 20, plotcomp(16) = 'scalar’,
mu=5.6, plot(17) = *thrmflux’

eps = lLe-6, plottype(17) = vector’,
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plot(18) = *material’,
plottype(18) = "contour’,
plotcomp(18) = 'scalar’,
plot(19) = "tcone’,
plottype(19) = 'contour’,
plotcomp(19) = 'scalar’,
plot(20) = "nrate’,
plottype(19) = "contour’,
plotcomp(19) = *scalar’,
plot(21) = 'sigfuc’,
plottype(19) = *contour’,
plotcomp(19) = "scalar’,
kpltreg(1) = 1,2,
keon{l) = 11,
intbound = .false.,
clabpict = .true.,
fichfram = 1,
distic = 0.1e-6,
slice(0) = "ept’,
slice(15) = "tcone’,
slice(16) = "nrate’,
slice(17) = 'sigfac’,
Iblkslic =1,
ibdyslic = 4,
ijslic=8,
neychist = 100,
histenrg = .true.,
$end
Scumt
circtype(l) = 'rle’,
tvaluesatt= 18 us
current(1) = 4.654¢6,
volt(1) = -2.877¢4,
exind(1) = 8.497¢-8,
exres(1) = 1.e-3,
Jend
Sezgeom
! height was 30cm
nblk =2,
npnts = 8,
pointx(1) = 0.0e-2, pointy(1) = 0.000¢-2,
pointx(2) = 2.1e-2, pointy(2) = 0.000¢-2,
pointx(3) = 2.5¢-2, pointy(3) = 0.000e-2,
pointx(4) = 0.0e-2, pointy(4) = 0.125¢-2,
poinix(5) = 2.1e-2, pointy(5) = 0.125¢-2,
pointx(6) = 2.5¢-2, pointy(6) = 0.125¢-2,
comers(1,1y=4,52,1,
comers(1,2) = 5,6,3,2,
Send
Sezphys
matnarnig = 'd’,
siecoldg = -1.¢99,
resmodlg = "wbular’,
etamaxg = l.e4,
Send
$matmdl
matnam(1) = 'd’,

! ...except use hydrogen’s category 3 table: resistivity, etc.

mattabs(3,2) = 25252,

Kenny F. Stephens II

! ..and in this case use spitzer resistivity.
resmodl(1) = 'spitzer’,
tenmodl(1) = ’spitzer’,

! setup Al
matnam(2) = 'al-new’,
resmodl(2) = 'tabular’,
tenmodl(2) = "tabular’,
elpmodI(2) = "steinb-g’,
elpname(2) = al-1100",
rocrad(2) = 1.0e2,

! setup inflow gas
matnam(3) = 'gas’,
sesanam(3) = 'h’,
eosmodI(3) = "tabular’,
tenmod(3) = "constant’,
ewcl(3) = L.ed,
resmodi(3) = "constant’,
eta0(3) = l.e4,

$end

$bfield
momfld = 2.1e-2,

$end

Sinmesh
icells(1) = 42,
jeells(1) = 16,
roi(1) = 7.02¢-3,
tempi(1) = 965.2,

teinit(1) = "pwlinear’,

teir(3,1)= 0.0,0.01725, 0.019125,

teiprfr(1,1) = 1.0, 0.9998, 0.998,
vi(1) = -3.415¢3,

uinit(1) = "pwlinear’,

uir(1,1)=  0.0,0.021,

uiprfr(1,1) = 0.0, 1.0,
magxybe(1,1) = "contmuty’,
magxybe(3,1) = "conmutv’,
gdvi(l) = 0.0,

ethrm(1,1) = 0.1,

rothrm(1,1) = 8.8¢3,
gdvib(2,1) = 0.0,

tethrm(3,1) = 0.1,

rothrm(3,1) = 8.8¢3,
hydbe(4,1) = "axis’,

icells(2) = 8,
jeells(2) = 16,
mamami(2) = ‘al-new’,
roi(2) = 2.7¢3,
roinit(2) = "pwlinear’,
roir(1,2) = 2.1e-2,2.15e-2, 2.2¢-2, 2.3¢-2, 2.4¢-2, 2.5¢-2,
roiprfr(1,2) =028, 0.65, 1.00, 0.99, 0.97, 0.95,
tempi(2) = 4.0e-2,
teinit(2) = 'pwlinear’,
teir(1,2)=  0.021,0.022,0.0225,0.023,0.0235,0.024,0.0245,0.025,
teiprfr(1,2) = 1.26, 1.00, 1.07, 1.24, 1.47, 1.72,2.00, 2.15,
ui(2) = -3.523e3,
uiniy(2) = "pwlinear’,
uir(1,2) = 2.0625¢-2, 2.125¢-2, 2.4375¢-2, 2.5e-2,
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uiprfr(1,2)= 1.0, 0979, 0.920, 0914,

magxybe(1,2) = "contnuty’,

magxybc(3,2) = "contuty’,

gdvl(2) = 0.0,
gdvib(2,2) = 0.0,
hydbe(2,2) = "flowthru’
matbe(2,2) = "gas’,

roflow(2,2) = L.e-2,

tflow(2,2)=0.2,
magzbc(2,2) = "insulat’,
currcin(2,2) = 1,
gdvlb(4,2) =00,

ropert(2) = "roderick’,
roprtam(2) = 0.10,
roprtmy(2) = 4.0,
roprtin(2) = 0.125¢-2,

binit(2) = "annulrjy’,
bzi(2) = 109.0,

Send
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Abstract

Spatial light modulators are used in a wide variety of applications ranging from optical computing to
display. The application that is of interest for this report is that of real-time holography. A system architecture has
been developed that uses a spatial light modulator as a real-time holographic element in a telescope system to
perform adaptive optical correction of primary mirror distortions. This allows a less expensive, lightweight primary
mirror to be used with little or no degradation of the resulting image. The spatial light modulator is the key element

to this system. A phase conjugate projection system is also being investigated for beam collimation/projection

applications using a similar inexpensive, lightweight primary mirror.
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Telesco rration compensation

Modem telescope designs require the use of large primary mirrors to achieve the high-resolution images
desired. In order to maintain the high optical quality necessary for these mirrors, they are generally manufactured as
a heavy, monolithic component. Fabrication of such a component is very costly, and transporting it is very difficult.
Because of these factors, the size of ground- and space-based telescopes is limited. By using an adaptive optics
technique, the optical requirements for the primary mirror can be relaxed so a large, low optical quality primary
mirror can be used in conjunction with some compensation optics to achieve high-resolution images with a
considerably reduced cost.

One proposed method of adaptive optic compensation for low quality primary mirrors is by using real-time
holography with an optically addressed spatial light modulator. This technique uses holographic phase subtraction
to remove the aberration of the low quality mirror. Figure 1 shows a conceptual set-up of the holographic phase

subtraction technique. A beacon laser probes the mirror and picks up the aberration of the primary mirror, ¢,, where

b, = (2” ;\XOPD) with A is the wavelength of the beacon laser and OPD is the optical path difference. The

aberrated beacon, Be'% , is interfered with a reference plane wave, B, from the beacon laser to form a hologram.
For an amplitude hologram the transmission is proportional to the squared modulus of the illuminating field, given

by: ’
T~2+eta 470

This hologram is then illuminated by the aberrated object field, Ae'®ei® where Ae'® is the undistorted

object field. Multiplying the aberrated object beam with the transmission function of the hologram:

Aeid’ei%T ~ Zeiq)ei“’a + Aei¢e2i¢ﬂ + Ae@
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Figure 1. Schematic of an adaptive optical technique for phase subtraction.
The three terms represent the zero, plus one, and minus one diffracted orders, respectively. The zero order,

proportional to eiPeita , is the original aberrated object beam transmitted through the hologram. The plus one order,

proportional to e/ Pei% , s the addition of the aberrated phases, creating further distortion. The minus one order,

Lo

proportional to e'®, is the subtraction of the aberrated phases, leaving only the unaberrated phase information, @ .

Real-time holographic element

The key component to this whole procedure is the real-time holographic element, the OASLM. Thete are
several important characteristics to consider when thinking about dynamic compensation of larger aberrations and
severe distortion, namely sensitivity, speed, diffraction efficiency, and resolution. OASLM devices have been used

to compensate for large distortions (hundreds of waves of aberration) with beam intensities as low as 50 uW/cm?,

Aberration compensation requires that the OASLM react at a speed greater than that at which the aberration

is changing, which is very dependent on the specific application. Nematic liquid crystal limits the response time to
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about 30 Hz due to the slow recovery time but devices have been built that have high diffraction efficiency, ~30%.
Surface stabilized ferroelectric LC can have a much faster response time, >1kHz, but typically have much lower

diffraction efficiency, <10%, because of the low tilt angle of the molecules.

Since the compensated image is found in the first order diffraction, the diffraction efficiency of the

OASLM is also a major source of loss. For a phase only sinusoidal modulation the refractive index profile can be

written as T =n+Aficosqx . The diffraction efficiency of this index profile is:
~ 2
n =1, (2nATd/A)|

where 2nAnd/A is the phase associated with the transmittance, or half the total phase modulation. With a nematic
OASLM operating in the analog phase modulation mode the largest theoretical diffraction efficiency achievable is
only about 34% at a phase modulation of about 3.7. In addition, phase modulation occurs for only one polarization
direction in nematic liquid crystal, so for unpolarized readout light the diffraction efficiency is reduced to about
15%. If a binary phase grating could be written in a polarization independent material, the diffraction efficiency

could theoretically go as high as 40%

The resolution of the OASLM is limited by the diffusion of charges in the photoconductor and by electric
field fringing effects in the photosensor, reflecting layer, and liquid crystal layer. The resolution of the OASLM
limits the severity of distortion that can be corrected for. It is desirable to have a resolution of greater than 100 line
pairs per mm while maintaining high diffraction efficiency, however, commercially available OASLMs have greatly

reduced diffraction efficiencies at spatial resolutions above about 30 Ip/mm.

A prototype device, which has been built under contract to the US Air Force by the Research Institutg' for
Laser Physics and Peterlab in St. Petersburg, Russia, uses a new type of photoconductor and a deformed helix
ferroelectric liquid crystal (DHFLC) in order to improve the resolution, diffraction efficiency and the response time.
A schematic of this device is shown in figure 2. The photoconductor is carbon-doped amorphous hydrogenated
silicon (a-Si:C:H) which has a very low dark conductivity as well as low carrier diffusion . The liquid crystal layer
is a ferroelectric liquid crystal (smectic C*) with a high tilt angle of 40° aligned in deformed helix configuration.

The photoconductor allows an increase in the resolution while the DHFLC increases the speed and diffraction
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Figure 2. Schematic depiction of the prototype optically addressed spatial light
modulator.

efficiency. In addition, if the high tilt angle of the ferroelectric liquid crystal makes it less sensitive to the

polarization of the read-out beam.

This device can operate as a binary phase modulator with the application of a driving voltage and the
writing light. Initially the DHFLC is driven to one of its stable states, +40°, by the application of a large voltage
(initialize voltage) across the device, which results in a large electric field across the liquid crystal layer. The
polarity of this voltage is arbitrary, the effect is the same regardless of the starting state. Then the voltage is
switched to a small, opposite value and the writing light is allowed to strike the photoconductor. Where light hits
the photoconductor the local conductivity increases and the electric field across it drops, therefore the electric field
across the liquid crystal layer increases and causes the molecules to switch to the other stable state rapidly. This
process is illustrated in figure 3. The areas not illuminated by the writing light also switch to the other stable state,
albeit on a slower time scale, causing a decay of the written pattern. This decay can be avoided if the entire process
is repeated before the molecules in the dark regions have time to completely switch states. The response time of the
device is the time it takes to reach maximum diffraction efficiency. The refresh rate of the OASLM is determined

by the repetition rate of the device, not by the response time of the liquid crystal itself.
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Figure 3. Timing diagram for hologram formation in the prototype OASLM
showing the bias voltage, spatial and temporal profile of the writing intensity
pulse and the orientation of the index ellipsoid.
Ideally the light regions would switch rapidly and the dark regions would maintain their orientation for an
extended time creating a persistent hologram. Physically, however, there is a tradeoff between the response time
and the hologram persistence. In order to have a fast response time there must be a large electric field across the

liquid crystal. So faster response times require higher applied voltages that also result in higher electric fields in the

dark regions and a faster decay rate.

Results

A primary focus of the investigation is the speed and diffraction efficiency of the OASLM when writing
and reading a hologram. Figure 4 shows the experimental set-up used to characterize these properties. A doubled
Nd:YAG (532 nm) laser was used as the writing beam and a diode laser (810 nm) was used as the readout beam.

The two different wavelengths were used because this device doesn’t have a reflective layer and must be used in the
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Figure 4. Experimental configuration used for characterizing the prototype
OASLM

transmission geometry. In order to avoid ﬂxe readout beam being absorbed in the photoconductor and degrading
performance, a higher wavelength was used. The writing beam was passed through a liquid crystal shutter to control
its temporal profile and then defocused and sent through a Mach-Zehnder type interferometer. The two arms of the
interferometer were overlapped on the photoconductor, creating a straight-line interference pattern and phase grating
in the liquid crystal. The readout beam was diffracted from this grating and the temporal dynamics of the first order
were measured using a fast photodiode. Because the device has no anti-reflection coating and there was still some
absorption of the read beam in the photoconductor, the diffraction efficiency is defined as the power in the first

diffracted order divided by the power in the transmitted zero order when there is no grating present.

The resolution of the device is measured by changing the crossing angle of the writing beam and therefore
the spatial frequency of the grating being written and observing the resulting diffraction. The diffraction efficiency
can also be changed by varying the values of the applied voltages and the parameters of the writing pulse. F igure S
shows a family of curves that were obtained by changing the resolution of the pattern being written on the OASLM.
For these curves, the resolution was set at 350 line pairs / mm and the voltage and write pulse were adjusted to
achieve the maximum peak diffraction efficiency. These settings were then left constant and the resolution was
changed by adjusting the crossing angle of the writing beams. The solid lines represent the diffraction efficiency,

the write pulse is the dotted line and the voltage is the dashed line. The decay in efficiency was discussed earlier
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Figure 5. Transient diffraction efficiency as the grating resolution is
changed.

(c.f. fig. 3) and the sharp drop-off of efficiency is due to the voltage switching back to the large initializing value. It
has been shown that by changing the amplitude, duty-cycle and frequency of the driving voltage it is possible to

make the diffraction efficiency nearly constant over the entire read-out time.

Figure 6 shows the maximum peak diffraction efficiency as a function of the spatial frequency of the
grating. The maximum peak efficiency was found by making small adjustments to the voltage and write pulse at
each spatial frequency. A peak diffraction efficiency of 34% can be attained at 18 lp/mm and at 370 Ip/mm a
diffraction efficiency of 8% is still achieved. Note that the resolutions were calculated from the angle between the

zero order and first order diffracted beams
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Figure 6. Maximum peak diffraction efficiency as the spatial grating
constant is changed.

Phase Conjugate Projection

It is sometimes desirable to have a large scale beam collimator for use with a telescope system for such
uses as illuminating an object. Figure 7 shows a schematic of a system that uses phase conjugation with a large, low

optical quality projection mirror to achieve beam collimation. As in the system above, the aberrations of the

primary mirror are probed with a beacon laser resulting in a wavefront of Be'% . The aberrated probe beam is then

directed into a degenerate four-wave mixing phase conjugate mirror. The phase conjugate of the probe beam, with a
v

wavefront of Be = | is projected onto the primary mirror and the aberrations in the conjugate beam cancel the

aberrations on the mirror leaving only a plane wave. At this time the investigation of this system is just beginning

and there are no publishable results.
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Figure 7. Schematic of a phace conjugate projection system

Conclusion

For applications involving real-time compensation of large dynamic aberrations requires the use of a spatial
light modulator beyond the capabilities of what is currently available commercially. A prototype ferroelectic SLM
was built under contract to Phillips Laboratory to meet these capabilities. This deformed helix ferroelectric liquid
crystal SLM shows increased diffraction efficiency and a much larger resolution than existing devices. For lower
resolutions the diffraction efficiency can be made as high as 33%. In addition to having high diffraction efficiency,
the prototype device shows a very high resolution, at 350 line pairs per mm the diffraction efficiency was still near
10%! This device shows characteristics that would make it a very good candidate to be used to compensate f9r

severe aberrations.
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